Update README.md
Browse files
README.md
CHANGED
|
@@ -1,9 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
| 3 |
---
|
| 4 |
|
| 5 |
# Ascites Segmentation with nnUNet
|
| 6 |
|
|
|
|
|
|
|
| 7 |
## Method 1: Run Inference using `nnunet_predict.py`
|
| 8 |
|
| 9 |
1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
|
|
@@ -105,8 +108,6 @@ user@machine:~/ascites_segmentation$ sudo docker run \
|
|
| 105 |
nnunet_docker /bin/sh inference.sh
|
| 106 |
```
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
- `--gpus` parameter:
|
| 111 |
- `0, 1, 2, ..., n` for integer number of GPUs
|
| 112 |
- `all` for all available GPUs on the system
|
|
@@ -117,3 +118,17 @@ nnunet_docker /bin/sh inference.sh
|
|
| 117 |
- `INPUT_FOLDER` contains all `.nii.gz` volumes to be predicted
|
| 118 |
- predicted results will be written to `OUTPUT_FOLDER`
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: AscitesModel
|
| 3 |
+
license: cc-by-nc-sa-4.0
|
| 4 |
---
|
| 5 |
|
| 6 |
# Ascites Segmentation with nnUNet
|
| 7 |
|
| 8 |
+
This model was trained as part of the research 'Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification' ([Paper](https://doi.org/10.1148/ryai.230601), [arXiv](https://arxiv.org/abs/2406.15979)).
|
| 9 |
+
|
| 10 |
## Method 1: Run Inference using `nnunet_predict.py`
|
| 11 |
|
| 12 |
1. Install [nnUNet_v1](https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1#installation) and [PyTorch](https://pytorch.org/get-started/locally/).
|
|
|
|
| 108 |
nnunet_docker /bin/sh inference.sh
|
| 109 |
```
|
| 110 |
|
|
|
|
|
|
|
| 111 |
- `--gpus` parameter:
|
| 112 |
- `0, 1, 2, ..., n` for integer number of GPUs
|
| 113 |
- `all` for all available GPUs on the system
|
|
|
|
| 118 |
- `INPUT_FOLDER` contains all `.nii.gz` volumes to be predicted
|
| 119 |
- predicted results will be written to `OUTPUT_FOLDER`
|
| 120 |
|
| 121 |
+
## Citation
|
| 122 |
+
|
| 123 |
+
If you find this repository helpful in your research, please consider citing our paper:
|
| 124 |
+
|
| 125 |
+
```text
|
| 126 |
+
@article{hou2024deep,
|
| 127 |
+
title={Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification},
|
| 128 |
+
author={Hou, Benjamin and Lee, Sung-Won and Lee, Jung-Min and Koh, Christopher and Xiao, Jing and Pickhardt, Perry J. and Summers, Ronald M.}
|
| 129 |
+
journal={Radiology: Artificial Intelligence},
|
| 130 |
+
pages={e230601},
|
| 131 |
+
year={2024},
|
| 132 |
+
publisher={Radiological Society of North America}
|
| 133 |
+
}
|
| 134 |
+
```
|