ezequiel commited on
Commit
44f2a29
·
verified ·
1 Parent(s): a2e1864

Upload 12 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,535 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:909469
8
+ - loss:CosineSimilarityLoss
9
+ base_model: intfloat/multilingual-e5-small
10
+ widget:
11
+ - source_sentence: esperto in formazione e motivazione del personale
12
+ sentences:
13
+ - linguistic informatics
14
+ - multi state oversight
15
+ - esperto in formazione e motivazione del personale
16
+ - source_sentence: drilling horizontal
17
+ sentences:
18
+ - gcp, bigquery, service accounts, cloud foundation
19
+ - visite guidate di libri
20
+ - introduction to rooms division management
21
+ - source_sentence: deploy de sistemas (centosos, cpanel)
22
+ sentences:
23
+ - nvq 2 automotive technician
24
+ - التحاور الشفهي بالبنجابية
25
+ - reader oriented-mind
26
+ - source_sentence: json処理
27
+ sentences:
28
+ - उच्च सटीकता वाले हाथ के औजारों का उपयोग
29
+ - owasp zapプロキシ
30
+ - manipulação de json
31
+ - source_sentence: digas audioproduktion
32
+ sentences:
33
+ - commitment to patient safety
34
+ - soziale arbeit und beratung
35
+ - formation strategies
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: sts dev
49
+ type: sts-dev
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: 0.9577111210471887
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: 0.8786537702630683
56
+ name: Spearman Cosine
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: sts test
62
+ type: sts-test
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.9570133219075257
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.8800070052053953
69
+ name: Spearman Cosine
70
+ ---
71
+
72
+ # SentenceTransformer based on intfloat/multilingual-e5-small
73
+
74
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
75
+
76
+ ## Model Details
77
+
78
+ ### Model Description
79
+ - **Model Type:** Sentence Transformer
80
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
81
+ - **Maximum Sequence Length:** 30 tokens
82
+ - **Output Dimensionality:** 384 dimensions
83
+ - **Similarity Function:** Cosine Similarity
84
+ <!-- - **Training Dataset:** Unknown -->
85
+ <!-- - **Language:** Unknown -->
86
+ <!-- - **License:** Unknown -->
87
+
88
+ ### Model Sources
89
+
90
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
91
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
92
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
93
+
94
+ ### Full Model Architecture
95
+
96
+ ```
97
+ SentenceTransformer(
98
+ (0): Transformer({'max_seq_length': 30, 'do_lower_case': False}) with Transformer model: BertModel
99
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
100
+ (2): Normalize()
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("sentence_transformers_model_id")
120
+ # Run inference
121
+ sentences = [
122
+ 'digas audioproduktion',
123
+ 'formation strategies',
124
+ 'commitment to patient safety',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 384]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Semantic Similarity
165
+
166
+ * Datasets: `sts-dev` and `sts-test`
167
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
168
+
169
+ | Metric | sts-dev | sts-test |
170
+ |:--------------------|:-----------|:---------|
171
+ | pearson_cosine | 0.9577 | 0.957 |
172
+ | **spearman_cosine** | **0.8787** | **0.88** |
173
+
174
+ <!--
175
+ ## Bias, Risks and Limitations
176
+
177
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
178
+ -->
179
+
180
+ <!--
181
+ ### Recommendations
182
+
183
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
184
+ -->
185
+
186
+ ## Training Details
187
+
188
+ ### Training Dataset
189
+
190
+ #### Unnamed Dataset
191
+
192
+ * Size: 909,469 training samples
193
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
194
+ * Approximate statistics based on the first 1000 samples:
195
+ | | sentence1 | sentence2 | score |
196
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
197
+ | type | string | string | float |
198
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.62 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
199
+ * Samples:
200
+ | sentence1 | sentence2 | score |
201
+ |:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:-----------------|
202
+ | <code>デジタルデータプロセッシング</code> | <code>数字数据处理</code> | <code>1.0</code> |
203
+ | <code>maintenance des équipements électriques, électroniques et de précision</code> | <code>maintenance of electronic, electrical and precision equipment</code> | <code>1.0</code> |
204
+ | <code>application frameworks</code> | <code>ソフトウェアフレームワーク</code> | <code>1.0</code> |
205
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
206
+ ```json
207
+ {
208
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
209
+ }
210
+ ```
211
+
212
+ ### Evaluation Dataset
213
+
214
+ #### Unnamed Dataset
215
+
216
+ * Size: 113,683 evaluation samples
217
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
218
+ * Approximate statistics based on the first 1000 samples:
219
+ | | sentence1 | sentence2 | score |
220
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
221
+ | type | string | string | float |
222
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.85 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.56</li><li>max: 1.0</li></ul> |
223
+ * Samples:
224
+ | sentence1 | sentence2 | score |
225
+ |:-------------------------------------------------------|:-----------------------------------|:------------------|
226
+ | <code>verstehen von geschriebenem portugiesisch</code> | <code>लिखित पुर्तगाली समझें</code> | <code>1.0</code> |
227
+ | <code>backbox pen test</code> | <code>backbox ペネトレーションテスト</code> | <code>1.0</code> |
228
+ | <code>ing. industrial en produccion y calidad</code> | <code>national speaking</code> | <code>0.19</code> |
229
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
230
+ ```json
231
+ {
232
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
233
+ }
234
+ ```
235
+
236
+ ### Training Hyperparameters
237
+ #### Non-Default Hyperparameters
238
+
239
+ - `eval_strategy`: epoch
240
+ - `per_device_train_batch_size`: 32
241
+ - `per_device_eval_batch_size`: 32
242
+ - `learning_rate`: 1e-05
243
+ - `num_train_epochs`: 4
244
+ - `warmup_ratio`: 0.1
245
+ - `fp16`: True
246
+
247
+ #### All Hyperparameters
248
+ <details><summary>Click to expand</summary>
249
+
250
+ - `overwrite_output_dir`: False
251
+ - `do_predict`: False
252
+ - `eval_strategy`: epoch
253
+ - `prediction_loss_only`: True
254
+ - `per_device_train_batch_size`: 32
255
+ - `per_device_eval_batch_size`: 32
256
+ - `per_gpu_train_batch_size`: None
257
+ - `per_gpu_eval_batch_size`: None
258
+ - `gradient_accumulation_steps`: 1
259
+ - `eval_accumulation_steps`: None
260
+ - `torch_empty_cache_steps`: None
261
+ - `learning_rate`: 1e-05
262
+ - `weight_decay`: 0.0
263
+ - `adam_beta1`: 0.9
264
+ - `adam_beta2`: 0.999
265
+ - `adam_epsilon`: 1e-08
266
+ - `max_grad_norm`: 1.0
267
+ - `num_train_epochs`: 4
268
+ - `max_steps`: -1
269
+ - `lr_scheduler_type`: linear
270
+ - `lr_scheduler_kwargs`: {}
271
+ - `warmup_ratio`: 0.1
272
+ - `warmup_steps`: 0
273
+ - `log_level`: passive
274
+ - `log_level_replica`: warning
275
+ - `log_on_each_node`: True
276
+ - `logging_nan_inf_filter`: True
277
+ - `save_safetensors`: True
278
+ - `save_on_each_node`: False
279
+ - `save_only_model`: False
280
+ - `restore_callback_states_from_checkpoint`: False
281
+ - `no_cuda`: False
282
+ - `use_cpu`: False
283
+ - `use_mps_device`: False
284
+ - `seed`: 42
285
+ - `data_seed`: None
286
+ - `jit_mode_eval`: False
287
+ - `use_ipex`: False
288
+ - `bf16`: False
289
+ - `fp16`: True
290
+ - `fp16_opt_level`: O1
291
+ - `half_precision_backend`: auto
292
+ - `bf16_full_eval`: False
293
+ - `fp16_full_eval`: False
294
+ - `tf32`: None
295
+ - `local_rank`: 0
296
+ - `ddp_backend`: None
297
+ - `tpu_num_cores`: None
298
+ - `tpu_metrics_debug`: False
299
+ - `debug`: []
300
+ - `dataloader_drop_last`: False
301
+ - `dataloader_num_workers`: 0
302
+ - `dataloader_prefetch_factor`: None
303
+ - `past_index`: -1
304
+ - `disable_tqdm`: False
305
+ - `remove_unused_columns`: True
306
+ - `label_names`: None
307
+ - `load_best_model_at_end`: False
308
+ - `ignore_data_skip`: False
309
+ - `fsdp`: []
310
+ - `fsdp_min_num_params`: 0
311
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
312
+ - `tp_size`: 0
313
+ - `fsdp_transformer_layer_cls_to_wrap`: None
314
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
315
+ - `deepspeed`: None
316
+ - `label_smoothing_factor`: 0.0
317
+ - `optim`: adamw_torch
318
+ - `optim_args`: None
319
+ - `adafactor`: False
320
+ - `group_by_length`: False
321
+ - `length_column_name`: length
322
+ - `ddp_find_unused_parameters`: None
323
+ - `ddp_bucket_cap_mb`: None
324
+ - `ddp_broadcast_buffers`: False
325
+ - `dataloader_pin_memory`: True
326
+ - `dataloader_persistent_workers`: False
327
+ - `skip_memory_metrics`: True
328
+ - `use_legacy_prediction_loop`: False
329
+ - `push_to_hub`: False
330
+ - `resume_from_checkpoint`: None
331
+ - `hub_model_id`: None
332
+ - `hub_strategy`: every_save
333
+ - `hub_private_repo`: None
334
+ - `hub_always_push`: False
335
+ - `gradient_checkpointing`: False
336
+ - `gradient_checkpointing_kwargs`: None
337
+ - `include_inputs_for_metrics`: False
338
+ - `include_for_metrics`: []
339
+ - `eval_do_concat_batches`: True
340
+ - `fp16_backend`: auto
341
+ - `push_to_hub_model_id`: None
342
+ - `push_to_hub_organization`: None
343
+ - `mp_parameters`:
344
+ - `auto_find_batch_size`: False
345
+ - `full_determinism`: False
346
+ - `torchdynamo`: None
347
+ - `ray_scope`: last
348
+ - `ddp_timeout`: 1800
349
+ - `torch_compile`: False
350
+ - `torch_compile_backend`: None
351
+ - `torch_compile_mode`: None
352
+ - `include_tokens_per_second`: False
353
+ - `include_num_input_tokens_seen`: False
354
+ - `neftune_noise_alpha`: None
355
+ - `optim_target_modules`: None
356
+ - `batch_eval_metrics`: False
357
+ - `eval_on_start`: False
358
+ - `use_liger_kernel`: False
359
+ - `eval_use_gather_object`: False
360
+ - `average_tokens_across_devices`: False
361
+ - `prompts`: None
362
+ - `batch_sampler`: batch_sampler
363
+ - `multi_dataset_batch_sampler`: proportional
364
+
365
+ </details>
366
+
367
+ ### Training Logs
368
+ <details><summary>Click to expand</summary>
369
+
370
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
371
+ |:------:|:-----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
372
+ | 0.0352 | 500 | 0.2006 | - | - | - |
373
+ | 0.0704 | 1000 | 0.0519 | - | - | - |
374
+ | 0.1056 | 1500 | 0.0361 | - | - | - |
375
+ | 0.1407 | 2000 | 0.0325 | - | - | - |
376
+ | 0.1759 | 2500 | 0.0299 | - | - | - |
377
+ | 0.2111 | 3000 | 0.0289 | - | - | - |
378
+ | 0.2463 | 3500 | 0.0274 | - | - | - |
379
+ | 0.2815 | 4000 | 0.0261 | - | - | - |
380
+ | 0.3167 | 4500 | 0.0254 | - | - | - |
381
+ | 0.3518 | 5000 | 0.0249 | - | - | - |
382
+ | 0.3870 | 5500 | 0.0243 | - | - | - |
383
+ | 0.4222 | 6000 | 0.0236 | - | - | - |
384
+ | 0.4574 | 6500 | 0.0232 | - | - | - |
385
+ | 0.4926 | 7000 | 0.0227 | - | - | - |
386
+ | 0.5278 | 7500 | 0.0219 | - | - | - |
387
+ | 0.5629 | 8000 | 0.0222 | - | - | - |
388
+ | 0.5981 | 8500 | 0.0217 | - | - | - |
389
+ | 0.6333 | 9000 | 0.0212 | - | - | - |
390
+ | 0.6685 | 9500 | 0.0205 | - | - | - |
391
+ | 0.7037 | 10000 | 0.0206 | - | - | - |
392
+ | 0.7389 | 10500 | 0.0207 | - | - | - |
393
+ | 0.7740 | 11000 | 0.02 | - | - | - |
394
+ | 0.8092 | 11500 | 0.0198 | - | - | - |
395
+ | 0.8444 | 12000 | 0.0199 | - | - | - |
396
+ | 0.8796 | 12500 | 0.0196 | - | - | - |
397
+ | 0.9148 | 13000 | 0.0192 | - | - | - |
398
+ | 0.9500 | 13500 | 0.019 | - | - | - |
399
+ | 0.9852 | 14000 | 0.0191 | - | - | - |
400
+ | 1.0 | 14211 | - | 0.0169 | 0.8695 | - |
401
+ | 1.0203 | 14500 | 0.0187 | - | - | - |
402
+ | 1.0555 | 15000 | 0.0179 | - | - | - |
403
+ | 1.0907 | 15500 | 0.0178 | - | - | - |
404
+ | 1.1259 | 16000 | 0.0173 | - | - | - |
405
+ | 1.1611 | 16500 | 0.018 | - | - | - |
406
+ | 1.1963 | 17000 | 0.0176 | - | - | - |
407
+ | 1.2314 | 17500 | 0.0173 | - | - | - |
408
+ | 1.2666 | 18000 | 0.0174 | - | - | - |
409
+ | 1.3018 | 18500 | 0.0173 | - | - | - |
410
+ | 1.3370 | 19000 | 0.0174 | - | - | - |
411
+ | 1.3722 | 19500 | 0.0173 | - | - | - |
412
+ | 1.4074 | 20000 | 0.0175 | - | - | - |
413
+ | 1.4425 | 20500 | 0.0179 | - | - | - |
414
+ | 1.4777 | 21000 | 0.017 | - | - | - |
415
+ | 1.5129 | 21500 | 0.0167 | - | - | - |
416
+ | 1.5481 | 22000 | 0.0174 | - | - | - |
417
+ | 1.5833 | 22500 | 0.017 | - | - | - |
418
+ | 1.6185 | 23000 | 0.0166 | - | - | - |
419
+ | 1.6536 | 23500 | 0.0165 | - | - | - |
420
+ | 1.6888 | 24000 | 0.0166 | - | - | - |
421
+ | 1.7240 | 24500 | 0.017 | - | - | - |
422
+ | 1.7592 | 25000 | 0.0167 | - | - | - |
423
+ | 1.7944 | 25500 | 0.0163 | - | - | - |
424
+ | 1.8296 | 26000 | 0.0167 | - | - | - |
425
+ | 1.8648 | 26500 | 0.0165 | - | - | - |
426
+ | 1.8999 | 27000 | 0.0165 | - | - | - |
427
+ | 1.9351 | 27500 | 0.0167 | - | - | - |
428
+ | 1.9703 | 28000 | 0.0162 | - | - | - |
429
+ | 2.0 | 28422 | - | 0.0155 | 0.8751 | - |
430
+ | 2.0055 | 28500 | 0.0161 | - | - | - |
431
+ | 2.0407 | 29000 | 0.0157 | - | - | - |
432
+ | 2.0759 | 29500 | 0.0156 | - | - | - |
433
+ | 2.1110 | 30000 | 0.015 | - | - | - |
434
+ | 2.1462 | 30500 | 0.0155 | - | - | - |
435
+ | 2.1814 | 31000 | 0.0152 | - | - | - |
436
+ | 2.2166 | 31500 | 0.0153 | - | - | - |
437
+ | 2.2518 | 32000 | 0.0154 | - | - | - |
438
+ | 2.2870 | 32500 | 0.0154 | - | - | - |
439
+ | 2.3221 | 33000 | 0.0152 | - | - | - |
440
+ | 2.3573 | 33500 | 0.0154 | - | - | - |
441
+ | 2.3925 | 34000 | 0.015 | - | - | - |
442
+ | 2.4277 | 34500 | 0.015 | - | - | - |
443
+ | 2.4629 | 35000 | 0.0148 | - | - | - |
444
+ | 2.4981 | 35500 | 0.0148 | - | - | - |
445
+ | 2.5332 | 36000 | 0.0151 | - | - | - |
446
+ | 2.5684 | 36500 | 0.0155 | - | - | - |
447
+ | 2.6036 | 37000 | 0.0152 | - | - | - |
448
+ | 2.6388 | 37500 | 0.0155 | - | - | - |
449
+ | 2.6740 | 38000 | 0.0149 | - | - | - |
450
+ | 2.7092 | 38500 | 0.0148 | - | - | - |
451
+ | 2.7444 | 39000 | 0.0151 | - | - | - |
452
+ | 2.7795 | 39500 | 0.0147 | - | - | - |
453
+ | 2.8147 | 40000 | 0.015 | - | - | - |
454
+ | 2.8499 | 40500 | 0.0147 | - | - | - |
455
+ | 2.8851 | 41000 | 0.0147 | - | - | - |
456
+ | 2.9203 | 41500 | 0.0151 | - | - | - |
457
+ | 2.9555 | 42000 | 0.0144 | - | - | - |
458
+ | 2.9906 | 42500 | 0.0146 | - | - | - |
459
+ | 3.0 | 42633 | - | 0.0148 | 0.8771 | - |
460
+ | 3.0258 | 43000 | 0.0144 | - | - | - |
461
+ | 3.0610 | 43500 | 0.0141 | - | - | - |
462
+ | 3.0962 | 44000 | 0.0146 | - | - | - |
463
+ | 3.1314 | 44500 | 0.0136 | - | - | - |
464
+ | 3.1666 | 45000 | 0.0143 | - | - | - |
465
+ | 3.2017 | 45500 | 0.0142 | - | - | - |
466
+ | 3.2369 | 46000 | 0.0146 | - | - | - |
467
+ | 3.2721 | 46500 | 0.0144 | - | - | - |
468
+ | 3.3073 | 47000 | 0.0142 | - | - | - |
469
+ | 3.3425 | 47500 | 0.0142 | - | - | - |
470
+ | 3.3777 | 48000 | 0.0138 | - | - | - |
471
+ | 3.4128 | 48500 | 0.0141 | - | - | - |
472
+ | 3.4480 | 49000 | 0.0141 | - | - | - |
473
+ | 3.4832 | 49500 | 0.0142 | - | - | - |
474
+ | 3.5184 | 50000 | 0.0142 | - | - | - |
475
+ | 3.5536 | 50500 | 0.0141 | - | - | - |
476
+ | 3.5888 | 51000 | 0.0141 | - | - | - |
477
+ | 3.6240 | 51500 | 0.014 | - | - | - |
478
+ | 3.6591 | 52000 | 0.0143 | - | - | - |
479
+ | 3.6943 | 52500 | 0.0136 | - | - | - |
480
+ | 3.7295 | 53000 | 0.0139 | - | - | - |
481
+ | 3.7647 | 53500 | 0.0141 | - | - | - |
482
+ | 3.7999 | 54000 | 0.0139 | - | - | - |
483
+ | 3.8351 | 54500 | 0.0141 | - | - | - |
484
+ | 3.8702 | 55000 | 0.014 | - | - | - |
485
+ | 3.9054 | 55500 | 0.0142 | - | - | - |
486
+ | 3.9406 | 56000 | 0.0142 | - | - | - |
487
+ | 3.9758 | 56500 | 0.014 | - | - | - |
488
+ | 4.0 | 56844 | - | 0.0147 | 0.8787 | - |
489
+ | -1 | -1 | - | - | - | 0.8800 |
490
+
491
+ </details>
492
+
493
+ ### Framework Versions
494
+ - Python: 3.11.11
495
+ - Sentence Transformers: 4.1.0
496
+ - Transformers: 4.51.3
497
+ - PyTorch: 2.6.0+cu124
498
+ - Accelerate: 1.5.2
499
+ - Datasets: 3.6.0
500
+ - Tokenizers: 0.21.1
501
+
502
+ ## Citation
503
+
504
+ ### BibTeX
505
+
506
+ #### Sentence Transformers
507
+ ```bibtex
508
+ @inproceedings{reimers-2019-sentence-bert,
509
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
510
+ author = "Reimers, Nils and Gurevych, Iryna",
511
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
512
+ month = "11",
513
+ year = "2019",
514
+ publisher = "Association for Computational Linguistics",
515
+ url = "https://arxiv.org/abs/1908.10084",
516
+ }
517
+ ```
518
+
519
+ <!--
520
+ ## Glossary
521
+
522
+ *Clearly define terms in order to be accessible across audiences.*
523
+ -->
524
+
525
+ <!--
526
+ ## Model Card Authors
527
+
528
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
529
+ -->
530
+
531
+ <!--
532
+ ## Model Card Contact
533
+
534
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
535
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 1536,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "tokenizer_class": "XLMRobertaTokenizer",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model card.txt ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Training dataset:
2
+ File: skills_matching_training_v1
3
+ Origin: gpt_dataset_acronyms, gpt_dataset_related, gpt_dataset_translations, gpt_dataset_generator, gpt_dataset_variant_generator
4
+ Characteristics: LOWER CASE
5
+ Length: 1.136.837 rows
6
+
7
+ Base Model: intfloat/multilingual-e5-small
8
+
9
+ Token Length = 30
10
+
11
+ Training Data:
12
+ Train 0.8, Val 0.1, Test 0.1
13
+ train_batch_size = 32
14
+ num_epochs = 4
15
+ warmup_ratio=0.1
16
+
17
+ Training Results:
18
+ Epoch Training Loss Validation Loss Sts-dev Pearson Cosine Sts-dev Spearman Cosine
19
+ 1 0.019100 0.016896 0.951701 0.869526
20
+ 2 0.016200 0.015457 0.955264 0.875107
21
+ 3 0.014600 0.014808 0.957285 0.877118
22
+ 4 0.014000 0.014653 0.957711 0.878654
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18aa4869ded36bc812734d4067cffa320cb0251f1ac7762be48c8bc527401ca2
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 30,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:329a8078cc04736e6c69645980ec6e76a17c2a2068e48038596ef0ce143acc67
3
+ size 17083052
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 30,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }