from transformers import AutoModelForCausalLM, AutoConfig import torch from safetensors.torch import save_file base_dir = "/projects/llama-cpt/models/Llama-3.2-1B" base = AutoModelForCausalLM.from_pretrained(base_dir, torch_dtype=torch.float16) cfg = AutoConfig.from_pretrained("/projects/llama-cpt/models/loopllama", trust_remote_code=True) from modeling_llama import LoopLlamaForCausalLM dst = LoopLlamaForCausalLM(cfg) missing, unexpected = dst.load_state_dict(base.state_dict(), strict=False) print("missing:", missing) print("unexpected:", unexpected) # state = dst.state_dict() # save_file(state, "/projects/llama-cpt/models/loopllama/model.safetensors") dst.save_pretrained( "/projects/llama-cpt/models/loopllama", safe_serialization=True, max_shard_size="2GB" )