|
|
import torch |
|
|
import torch.nn as nn |
|
|
from spikingjelly.clock_driven.neuron import MultiStepParametricLIFNode, MultiStepLIFNode |
|
|
from timm.models.layers import to_2tuple, trunc_normal_, DropPath |
|
|
from timm.models.registry import register_model |
|
|
from timm.models.vision_transformer import _cfg |
|
|
from functools import partial |
|
|
from timm.models import create_model |
|
|
from .delay_synaptic_func_inter import DelayConv |
|
|
|
|
|
__all__ = ['delay_QKFormer'] |
|
|
|
|
|
class MLP(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.mlp1_conv = nn.Conv2d(in_features, hidden_features, kernel_size=1, stride=1) |
|
|
self.mlp1_bn = nn.BatchNorm2d(hidden_features) |
|
|
self.mlp1_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.mlp2_conv = nn.Conv2d(hidden_features, out_features, kernel_size=1, stride=1) |
|
|
self.mlp2_bn = nn.BatchNorm2d(out_features) |
|
|
self.mlp2_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.c_hidden = hidden_features |
|
|
self.c_output = out_features |
|
|
|
|
|
def forward(self, x): |
|
|
T, B, C, H, W = x.shape |
|
|
|
|
|
x = self.mlp1_conv(x.flatten(0, 1)) |
|
|
x = self.mlp1_bn(x).reshape(T, B, self.c_hidden, H, W) |
|
|
x = self.mlp1_lif(x) |
|
|
|
|
|
x = self.mlp2_conv(x.flatten(0, 1)) |
|
|
x = self.mlp2_bn(x).reshape(T, B, C, H, W) |
|
|
x = self.mlp2_lif(x) |
|
|
return x |
|
|
|
|
|
class Token_QK_Attention(nn.Module): |
|
|
def __init__(self, |
|
|
dim, |
|
|
num_heads=8, |
|
|
qkv_bias=False, |
|
|
qk_scale=None, |
|
|
attn_drop=0., |
|
|
proj_drop=0., |
|
|
sr_ratio=1, |
|
|
k=16): |
|
|
super().__init__() |
|
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
|
|
|
self.q_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1, bias=False) |
|
|
self.q_bn = nn.BatchNorm1d(dim) |
|
|
self.q_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
|
|
|
self.k_proj_delay = DelayConv(in_c=self.dim, k=k) |
|
|
self.k_bn = nn.BatchNorm1d(dim) |
|
|
self.k_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.attn_lif = MultiStepLIFNode(tau=2.0, v_threshold=0.5, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1) |
|
|
self.proj_bn = nn.BatchNorm1d(dim) |
|
|
self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
def forward(self, x): |
|
|
T, B, C, H, W = x.shape |
|
|
|
|
|
x = x.flatten(3) |
|
|
T, B, C, N = x.shape |
|
|
x_for_qkv = x.flatten(0, 1) |
|
|
|
|
|
q_conv_out = self.q_conv(x_for_qkv) |
|
|
q_conv_out = self.q_bn(q_conv_out).reshape(T, B, C, N) |
|
|
q_conv_out = self.q_lif(q_conv_out) |
|
|
q = q_conv_out.unsqueeze(2).reshape(T, B, self.num_heads, C // self.num_heads, N) |
|
|
|
|
|
|
|
|
k_conv_out = self.k_proj_delay(x_for_qkv.reshape(T,B,C,N)) |
|
|
k_conv_out = self.k_bn(k_conv_out).reshape(T, B, C, N) |
|
|
k_conv_out = self.k_lif(k_conv_out) |
|
|
k = k_conv_out.unsqueeze(2).reshape(T, B, self.num_heads, C // self.num_heads, N) |
|
|
|
|
|
q = torch.sum(q, dim=3, keepdim=True) |
|
|
attn = self.attn_lif(q) |
|
|
x = torch.mul(attn, k) |
|
|
|
|
|
x = x.flatten(2, 3) |
|
|
x = self.proj_bn(self.proj_conv(x.flatten(0, 1))).reshape(T, B, C, H, W) |
|
|
x = self.proj_lif(x) |
|
|
return x |
|
|
|
|
|
class Spiking_Self_Attention(nn.Module): |
|
|
def __init__(self, |
|
|
dim, |
|
|
num_heads=8, |
|
|
qkv_bias=False, |
|
|
qk_scale=None, |
|
|
attn_drop=0., |
|
|
proj_drop=0., |
|
|
sr_ratio=1, |
|
|
k=16): |
|
|
super().__init__() |
|
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = 0.125 |
|
|
self.q_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1, bias=False) |
|
|
self.q_bn = nn.BatchNorm1d(dim) |
|
|
self.q_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
|
|
|
self.k_proj_delay = DelayConv(in_c=self.dim, k=k) |
|
|
self.k_bn = nn.BatchNorm1d(dim) |
|
|
self.k_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
|
|
|
self.v_proj_delay = DelayConv(in_c=self.dim, k=k) |
|
|
self.v_bn = nn.BatchNorm1d(dim) |
|
|
self.v_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
self.attn_lif = MultiStepLIFNode(tau=2.0, v_threshold=0.5, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1) |
|
|
self.proj_bn = nn.BatchNorm1d(dim) |
|
|
self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.qkv_mp = nn.MaxPool1d(4) |
|
|
|
|
|
def forward(self, x): |
|
|
T, B, C, H, W = x.shape |
|
|
|
|
|
x = x.flatten(3) |
|
|
T, B, C, N = x.shape |
|
|
x_for_qkv = x.flatten(0, 1) |
|
|
|
|
|
q_conv_out = self.q_conv(x_for_qkv) |
|
|
q_conv_out = self.q_bn(q_conv_out).reshape(T, B, C, N).contiguous() |
|
|
q_conv_out = self.q_lif(q_conv_out) |
|
|
q = q_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, |
|
|
4).contiguous() |
|
|
|
|
|
k_conv_out = self.k_proj_delay(x_for_qkv.reshape(T,B,C,N)) |
|
|
k_conv_out = self.k_bn(k_conv_out).reshape(T, B, C, N).contiguous() |
|
|
k_conv_out = self.k_lif(k_conv_out) |
|
|
k = k_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, |
|
|
4).contiguous() |
|
|
|
|
|
v_conv_out = self.v_proj_delay(x_for_qkv.reshape(T,B,C,N)) |
|
|
v_conv_out = self.v_bn(v_conv_out).reshape(T, B, C, N).contiguous() |
|
|
v_conv_out = self.v_lif(v_conv_out) |
|
|
v = v_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, |
|
|
4).contiguous() |
|
|
|
|
|
x = k.transpose(-2, -1) @ v |
|
|
x = (q @ x) * self.scale |
|
|
|
|
|
x = x.transpose(3, 4).reshape(T, B, C, N).contiguous() |
|
|
x = self.attn_lif(x) |
|
|
x = x.flatten(0, 1) |
|
|
x = self.proj_lif(self.proj_bn(self.proj_conv(x))).reshape(T, B, C, H, W) |
|
|
return x |
|
|
|
|
|
class TokenSpikingTransformer(nn.Module): |
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
|
drop_path=0., norm_layer=nn.LayerNorm, sr_ratio=1): |
|
|
super().__init__() |
|
|
self.tssa = Token_QK_Attention(dim, num_heads) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = MLP(in_features= dim, hidden_features=mlp_hidden_dim, drop=drop) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
x = x + self.tssa(x) |
|
|
x = x + self.mlp(x) |
|
|
|
|
|
return x |
|
|
|
|
|
class SpikingTransformer(nn.Module): |
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
|
drop_path=0., norm_layer=nn.LayerNorm, sr_ratio=1): |
|
|
super().__init__() |
|
|
self.ssa = Spiking_Self_Attention(dim, num_heads) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = MLP(in_features= dim, hidden_features=mlp_hidden_dim, drop=drop) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
x = x + self.ssa(x) |
|
|
x = x + self.mlp(x) |
|
|
|
|
|
return x |
|
|
|
|
|
class PatchEmbedInit(nn.Module): |
|
|
def __init__(self, img_size_h=128, img_size_w=128, patch_size=4, in_channels=2, embed_dims=256): |
|
|
super().__init__() |
|
|
self.image_size = [img_size_h, img_size_w] |
|
|
patch_size = to_2tuple(patch_size) |
|
|
self.patch_size = patch_size |
|
|
self.C = in_channels |
|
|
self.H, self.W = self.image_size[0] // patch_size[0], self.image_size[1] // patch_size[1] |
|
|
self.num_patches = self.H * self.W |
|
|
|
|
|
self.proj_conv = nn.Conv2d(in_channels, embed_dims // 8, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj_bn = nn.BatchNorm2d(embed_dims // 8) |
|
|
self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj1_conv = nn.Conv2d(embed_dims // 8, embed_dims // 4, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj1_bn = nn.BatchNorm2d(embed_dims // 4) |
|
|
self.maxpool1 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
self.proj1_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj2_conv = nn.Conv2d(embed_dims//4, embed_dims // 2, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj2_bn = nn.BatchNorm2d(embed_dims // 2) |
|
|
self.maxpool2 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
self.proj2_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj3_conv = nn.Conv2d(embed_dims // 2, embed_dims, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj3_bn = nn.BatchNorm2d(embed_dims) |
|
|
self.maxpool3 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
self.proj3_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj_res_conv = nn.Conv2d(embed_dims // 4, embed_dims, kernel_size=1, stride=4, padding=0, bias=False) |
|
|
self.proj_res_bn = nn.BatchNorm2d(embed_dims) |
|
|
self.proj_res_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
|
|
|
def forward(self, x): |
|
|
T, B, C, H, W = x.shape |
|
|
|
|
|
|
|
|
x = self.proj_conv(x.flatten(0, 1)) |
|
|
x = self.proj_bn(x).reshape(T, B, -1, H, W) |
|
|
x = self.proj_lif(x).flatten(0, 1).contiguous() |
|
|
|
|
|
x = self.proj1_conv(x) |
|
|
x = self.proj1_bn(x) |
|
|
x = self.maxpool1(x) |
|
|
_, _, H1, W1 = x.shape |
|
|
x = x.reshape(T, B, -1, H1, W1).contiguous() |
|
|
x = self.proj1_lif(x).flatten(0, 1).contiguous() |
|
|
|
|
|
x_feat = x |
|
|
x = self.proj2_conv(x) |
|
|
x = self.proj2_bn(x) |
|
|
x = self.maxpool2(x) |
|
|
_, _, H2, W2 = x.shape |
|
|
x = x.reshape(T, B, -1, H2, W2).contiguous() |
|
|
x = self.proj2_lif(x).flatten(0, 1).contiguous() |
|
|
|
|
|
x = self.proj3_conv(x) |
|
|
x = self.proj3_bn(x) |
|
|
x = self.maxpool3(x) |
|
|
_, _, H3, W3 = x.shape |
|
|
x = x.reshape(T, B, -1, H3, W3).contiguous() |
|
|
x = self.proj3_lif(x) |
|
|
|
|
|
x_feat = self.proj_res_conv(x_feat) |
|
|
x_feat = self.proj_res_bn(x_feat) |
|
|
_, _, Hres, Wres = x_feat.shape |
|
|
x_feat = x_feat.reshape(T, B, -1, Hres, Wres).contiguous() |
|
|
x_feat = self.proj_res_lif(x_feat) |
|
|
x = x + x_feat |
|
|
|
|
|
return x |
|
|
|
|
|
class PatchEmbeddingStage(nn.Module): |
|
|
def __init__(self, img_size_h=128, img_size_w=128, patch_size=4, in_channels=2, embed_dims=256): |
|
|
super().__init__() |
|
|
self.image_size = [img_size_h, img_size_w] |
|
|
patch_size = to_2tuple(patch_size) |
|
|
self.patch_size = patch_size |
|
|
self.C = in_channels |
|
|
self.H, self.W = self.image_size[0] // patch_size[0], self.image_size[1] // patch_size[1] |
|
|
self.num_patches = self.H * self.W |
|
|
|
|
|
self.proj_conv = nn.Conv2d(embed_dims//2, embed_dims, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj_bn = nn.BatchNorm2d(embed_dims) |
|
|
self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj4_conv = nn.Conv2d(embed_dims, embed_dims, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj4_bn = nn.BatchNorm2d(embed_dims) |
|
|
self.proj4_maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
self.proj4_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj_res_conv = nn.Conv2d(embed_dims//2, embed_dims, kernel_size=1, stride=2, padding=0, bias=False) |
|
|
self.proj_res_bn = nn.BatchNorm2d(embed_dims) |
|
|
self.proj_res_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
def forward(self, x): |
|
|
T, B, C, H, W = x.shape |
|
|
|
|
|
|
|
|
x = x.flatten(0, 1).contiguous() |
|
|
x_feat = x |
|
|
|
|
|
x = self.proj_conv(x) |
|
|
x = self.proj_bn(x).reshape(T, B, -1, H, W).contiguous() |
|
|
x = self.proj_lif(x).flatten(0, 1).contiguous() |
|
|
|
|
|
x = self.proj4_conv(x) |
|
|
x = self.proj4_bn(x) |
|
|
x = self.proj4_maxpool(x) |
|
|
_, _, H4, W4 = x.shape |
|
|
x = x.reshape(T, B, -1, H4, W4).contiguous() |
|
|
x = self.proj4_lif(x) |
|
|
|
|
|
x_feat = self.proj_res_conv(x_feat) |
|
|
x_feat = self.proj_res_bn(x_feat) |
|
|
_, _, Hres, Wres = x_feat.shape |
|
|
x_feat = x_feat.reshape(T, B, -1, Hres, Wres).contiguous() |
|
|
x_feat = self.proj_res_lif(x_feat) |
|
|
|
|
|
x = x + x_feat |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class vit_snn(nn.Module): |
|
|
def __init__(self, |
|
|
img_size_h=128, img_size_w=128, patch_size=16, in_channels=2, num_classes=11, |
|
|
embed_dims=[64, 128, 256], num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], qkv_bias=False, qk_scale=None, |
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, |
|
|
depths=[6, 8, 6], sr_ratios=[8, 4, 2], T=4, pretrained_cfg=None, in_chans = 3, no_weight_decay = None |
|
|
): |
|
|
super().__init__() |
|
|
self.num_classes = num_classes |
|
|
self.depths = depths |
|
|
self.T = T |
|
|
num_heads = [16, 16, 16] |
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depths)] |
|
|
|
|
|
|
|
|
patch_embed1 = PatchEmbedInit(img_size_h=img_size_h, |
|
|
img_size_w=img_size_w, |
|
|
patch_size=patch_size, |
|
|
in_channels=in_channels, |
|
|
embed_dims=embed_dims // 2) |
|
|
|
|
|
stage1 = nn.ModuleList([TokenSpikingTransformer( |
|
|
dim=embed_dims // 2, num_heads=num_heads[0], mlp_ratio=mlp_ratios, qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[j], |
|
|
norm_layer=norm_layer, sr_ratio=sr_ratios) |
|
|
for j in range(1)]) |
|
|
|
|
|
|
|
|
patch_embed2 = PatchEmbeddingStage(img_size_h=img_size_h, |
|
|
img_size_w=img_size_w, |
|
|
patch_size=patch_size, |
|
|
in_channels=in_channels, |
|
|
embed_dims=embed_dims) |
|
|
|
|
|
|
|
|
stage2 = nn.ModuleList([SpikingTransformer( |
|
|
dim=embed_dims, num_heads=num_heads[1], mlp_ratio=mlp_ratios, qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[j], |
|
|
norm_layer=norm_layer, sr_ratio=sr_ratios) |
|
|
for j in range(1)]) |
|
|
|
|
|
|
|
|
setattr(self, f"patch_embed1", patch_embed1) |
|
|
setattr(self, f"stage1", stage1) |
|
|
setattr(self, f"patch_embed2", patch_embed2) |
|
|
setattr(self, f"stage2", stage2) |
|
|
|
|
|
|
|
|
|
|
|
self.head = nn.Linear(embed_dims, num_classes) if num_classes > 0 else nn.Identity() |
|
|
self.apply(self._init_weights) |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return {'pose_embed'} |
|
|
|
|
|
@torch.jit.ignore |
|
|
def _get_pos_embed(self, pos_embed, patch_embed, H, W): |
|
|
return None |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
def forward_features(self, x): |
|
|
stage1 = getattr(self, f"stage1") |
|
|
patch_embed1 = getattr(self, f"patch_embed1") |
|
|
stage2 = getattr(self, f"stage2") |
|
|
patch_embed2 = getattr(self, f"patch_embed2") |
|
|
|
|
|
x = patch_embed1(x) |
|
|
for blk in stage1: |
|
|
x = blk(x) |
|
|
|
|
|
x = patch_embed2(x) |
|
|
for blk in stage2: |
|
|
x = blk(x) |
|
|
|
|
|
return x.flatten(3).mean(3) |
|
|
|
|
|
def forward(self, x): |
|
|
x = x.permute(1, 0, 2, 3, 4) |
|
|
|
|
|
|
|
|
|
|
|
x = self.forward_features(x) |
|
|
x = self.head(x.mean(0)) |
|
|
return x |
|
|
|
|
|
|
|
|
@register_model |
|
|
def delay_QKFormer(pretrained=False, **kwargs): |
|
|
model = vit_snn( |
|
|
patch_size=16, embed_dims=256, num_heads=16, mlp_ratios=4, |
|
|
in_channels=2, num_classes=101, qkv_bias=False, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=4, sr_ratios=1, |
|
|
**kwargs |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
return model |
|
|
|
|
|
|
|
|
from timm.models import create_model |
|
|
|
|
|
if __name__ == '__main__': |
|
|
x = torch.randn(1, 1, 2, 128, 128).cuda() |
|
|
model = create_model( |
|
|
'delay_QKFormer', |
|
|
pretrained=False, |
|
|
drop_rate=0, |
|
|
drop_path_rate=0.1, |
|
|
drop_block_rate=None, |
|
|
).cuda() |
|
|
model.eval() |
|
|
|
|
|
from torchinfo import summary |
|
|
summary(model, input_size=(1, 1, 2, 128, 128)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|