|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from timm.models.layers import DropPath |
|
|
|
|
|
|
|
|
_cur_active: torch.Tensor = None |
|
|
|
|
|
def _get_active_ex_or_ii(H, W, returning_active_ex=True): |
|
|
h_repeat, w_repeat = H // _cur_active.shape[-2], W // _cur_active.shape[-1] |
|
|
active_ex = _cur_active.repeat_interleave(h_repeat, dim=2).repeat_interleave(w_repeat, dim=3) |
|
|
return active_ex if returning_active_ex else active_ex.squeeze(1).nonzero(as_tuple=True) |
|
|
|
|
|
|
|
|
def sp_conv_forward(self, x: torch.Tensor): |
|
|
x = super(type(self), self).forward(x) |
|
|
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=True) |
|
|
return x |
|
|
|
|
|
|
|
|
def sp_bn_forward(self, x: torch.Tensor): |
|
|
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=False) |
|
|
|
|
|
bhwc = x.permute(0, 2, 3, 1) |
|
|
nc = bhwc[ii] |
|
|
nc = super(type(self), self).forward(nc) |
|
|
|
|
|
bchw = torch.zeros_like(bhwc) |
|
|
bchw[ii] = nc |
|
|
bchw = bchw.permute(0, 3, 1, 2) |
|
|
return bchw |
|
|
|
|
|
|
|
|
class SparseConv2d(nn.Conv2d): |
|
|
forward = sp_conv_forward |
|
|
|
|
|
|
|
|
class SparseMaxPooling(nn.MaxPool2d): |
|
|
forward = sp_conv_forward |
|
|
|
|
|
|
|
|
class SparseAvgPooling(nn.AvgPool2d): |
|
|
forward = sp_conv_forward |
|
|
|
|
|
|
|
|
class SparseBatchNorm2d(nn.BatchNorm1d): |
|
|
forward = sp_bn_forward |
|
|
|
|
|
|
|
|
class SparseSyncBatchNorm2d(nn.SyncBatchNorm): |
|
|
forward = sp_bn_forward |
|
|
|
|
|
|
|
|
class SparseConvNeXtLayerNorm(nn.LayerNorm): |
|
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
|
with shape (batch_size, channels, height, width). |
|
|
""" |
|
|
|
|
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", sparse=True): |
|
|
if data_format not in ["channels_last", "channels_first"]: |
|
|
raise NotImplementedError |
|
|
super().__init__(normalized_shape, eps, elementwise_affine=True) |
|
|
self.data_format = data_format |
|
|
self.sparse = sparse |
|
|
|
|
|
def forward(self, x): |
|
|
if x.ndim == 4: |
|
|
if self.data_format == "channels_last": |
|
|
if self.sparse: |
|
|
ii = _get_active_ex_or_ii(H=x.shape[1], W=x.shape[2], returning_active_ex=False) |
|
|
nc = x[ii] |
|
|
nc = super(SparseConvNeXtLayerNorm, self).forward(nc) |
|
|
|
|
|
x = torch.zeros_like(x) |
|
|
x[ii] = nc |
|
|
return x |
|
|
else: |
|
|
return super(SparseConvNeXtLayerNorm, self).forward(x) |
|
|
else: |
|
|
if self.sparse: |
|
|
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=False) |
|
|
bhwc = x.permute(0, 2, 3, 1) |
|
|
nc = bhwc[ii] |
|
|
nc = super(SparseConvNeXtLayerNorm, self).forward(nc) |
|
|
|
|
|
x = torch.zeros_like(bhwc) |
|
|
x[ii] = nc |
|
|
return x.permute(0, 3, 1, 2) |
|
|
else: |
|
|
u = x.mean(1, keepdim=True) |
|
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
|
return x |
|
|
else: |
|
|
if self.sparse: |
|
|
raise NotImplementedError |
|
|
else: |
|
|
return super(SparseConvNeXtLayerNorm, self).forward(x) |
|
|
|
|
|
def __repr__(self): |
|
|
return super(SparseConvNeXtLayerNorm, self).__repr__()[:-1] + f', ch={self.data_format.split("_")[-1]}, sp={self.sparse})' |
|
|
|
|
|
|
|
|
class SparseConvNeXtBlock(nn.Module): |
|
|
r""" ConvNeXt Block. There are two equivalent implementations: |
|
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
|
""" |
|
|
|
|
|
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, sparse=True, ks=7): |
|
|
super().__init__() |
|
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=ks, padding=ks//2, groups=dim) |
|
|
self.norm = SparseConvNeXtLayerNorm(dim, eps=1e-6, sparse=sparse) |
|
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
|
self.act = nn.GELU() |
|
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
|
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), |
|
|
requires_grad=True) if layer_scale_init_value > 0 else None |
|
|
self.drop_path: nn.Module = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.sparse = sparse |
|
|
|
|
|
def forward(self, x): |
|
|
input = x |
|
|
x = self.dwconv(x) |
|
|
x = x.permute(0, 2, 3, 1) |
|
|
x = self.norm(x) |
|
|
x = self.pwconv1(x) |
|
|
x = self.act(x) |
|
|
x = self.pwconv2(x) |
|
|
if self.gamma is not None: |
|
|
x = self.gamma * x |
|
|
x = x.permute(0, 3, 1, 2) |
|
|
|
|
|
if self.sparse: |
|
|
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], returning_active_ex=True) |
|
|
|
|
|
x = input + self.drop_path(x) |
|
|
return x |
|
|
|
|
|
def __repr__(self): |
|
|
return super(SparseConvNeXtBlock, self).__repr__()[:-1] + f', sp={self.sparse})' |
|
|
|
|
|
|
|
|
|
|
|
|