eagle0504 commited on
Commit
fd4a5c4
verified
1 Parent(s): bfedad4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -135
README.md CHANGED
@@ -1,199 +1,176 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 馃 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
 
 
114
 
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
 
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - vision-language
5
+ - image-to-text
6
+ - question-answering
7
+ - fine-tuned
8
+ - blip
9
+ - vqa
10
  ---
11
 
 
 
 
12
 
13
+ # BLIP VQA Fine-tuned Model - Draft 1
14
 
15
+ This model generates structured question-answer pairs from input images, fine-tuned for visual question answering tasks with structured output format.
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
+ This is a fine-tuned BLIP model specifically designed for Visual Question Answering (VQA) tasks. The model takes images as input and generates structured question-answer pairs in XML-like format with `<question>` and `<answer>` tags.
 
 
22
 
23
+ - **Developed by:** eagle0504
24
+ - **Model type:** Vision-Language Model (BLIP-based VQA)
25
+ - **Language(s):** English
26
+ - **License:** Apache 2.0
27
+ - **Finetuned from model:** BLIP (Bootstrapping Language-Image Pre-training)
 
 
28
 
29
+ ### Model Sources
30
 
31
+ - **Repository:** https://huggingface.co/eagle0504/blip-vqa-finetuned-draft-1
32
+ - **Base Model:** BLIP (Salesforce)
 
 
 
33
 
34
  ## Uses
35
 
 
 
36
  ### Direct Use
37
 
38
+ The model can be used for:
39
+ - Automated question-answer generation from images
40
+ - Visual content analysis and understanding
41
+ - Educational content creation from visual materials
42
+ - Image captioning with structured Q&A format
43
 
44
+ ### Usage Example
45
 
46
+ ```python
47
+ from transformers import AutoProcessor, AutoModelForVision2Seq
48
+ from PIL import Image
49
+ import torch
50
 
51
+ # Load model and processor
52
+ model = AutoModelForVision2Seq.from_pretrained("eagle0504/blip-vqa-finetuned-draft-1")
53
+ processor = AutoProcessor.from_pretrained("eagle0504/blip-vqa-finetuned-draft-1")
 
 
54
 
55
+ # Load and process image
56
+ image = Image.open("path/to/your/image.jpg")
57
+ inputs = processor(images=image, return_tensors="pt")
58
 
59
+ # Generate question-answer pair
60
+ with torch.no_grad():
61
+ generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
62
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
63
+
64
+ print(generated_text)
65
+ # Output: <question>what is there in the figure?</question><answer>the entire thickness of the epithelium</answer>
66
+ ```
 
67
 
68
+ ### Out-of-Scope Use
 
 
 
 
 
 
69
 
70
+ - The model is not designed for real-time applications requiring immediate responses
71
+ - Not suitable for generating factual information that requires external knowledge beyond visual content
72
+ - May not perform well on images significantly different from the training distribution
73
+ - Should not be used for critical decision-making without human oversight
74
 
75
  ## Training Details
76
 
77
  ### Training Data
78
 
79
+ The model was fine-tuned on a dataset containing:
80
+ - **Dataset size:** 19,654 image-question-answer triplets
81
+ - **Features:** Images paired with corresponding questions and answers
82
+ - **Format:** Structured data with XML-like tags for questions and answers
83
 
84
  ### Training Procedure
85
 
 
 
 
 
 
 
 
86
  #### Training Hyperparameters
87
 
88
+ - **Training regime:** Mixed precision training (fp16/bf16)
89
+ - **Max sequence length:** 50 tokens
90
+ - **Batch size:** [Your batch size]
91
+ - **Learning rate:** [Your learning rate]
92
+ - **Epochs:** [Number of epochs]
 
 
93
 
94
+ #### Preprocessing
95
 
96
+ Images are processed using the model's associated processor, which handles:
97
+ - Image resizing and normalization
98
+ - Tensor conversion for model input
99
+ - Text tokenization for question-answer pairs
100
 
101
+ ## Performance
102
 
103
+ The model generates structured question-answer pairs with the following format:
104
+ ```
105
+ <question>[Generated question about the image]</question><answer>[Corresponding answer]</answer>
106
+ ```
107
 
108
+ ### Evaluation Metrics
109
 
110
+ - Text generation quality
111
+ - Semantic relevance of questions to image content
112
+ - Accuracy of answers relative to visual content
113
+ - Format consistency (proper XML tag structure)
114
 
115
+ ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
+ ### Known Limitations
118
 
119
+ - Performance may vary based on image quality and complexity
120
+ - Generated questions and answers reflect patterns in training data
121
+ - May produce repetitive or generic questions for certain image types
122
+ - Limited to the vocabulary and concepts present in training data
123
 
124
+ ### Recommendations
125
 
126
+ - Validate outputs for critical applications
127
+ - Consider domain-specific fine-tuning for specialized use cases
128
+ - Review generated content for appropriateness in your specific context
 
 
129
 
130
+ ## Technical Specifications
131
 
132
+ ### Model Architecture
133
 
134
+ - Base architecture: BLIP (Bootstrapping Language-Image Pre-training)
135
+ - Vision Encoder: ViT (Vision Transformer)
136
+ - Text Decoder: BERT-based decoder
137
+ - Input: RGB images (224x224 default resolution)
138
+ - Output: Text sequences with structured Q&A format (`<question>` and `<answer>` tags)
139
+ - Fine-tuned for Visual Question Answering with structured output
140
 
141
  ### Compute Infrastructure
142
 
143
+ #### Hardware Requirements
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
+ - GPU memory: Minimum 4GB for inference
146
+ - CPU: Compatible with modern processors
147
+ - RAM: 8GB+ recommended for optimal performance
148
 
149
+ #### Software Dependencies
150
 
151
+ ```
152
+ transformers>=4.35.0
153
+ torch>=2.0.0
154
+ Pillow>=8.0.0
155
+ ```
156
 
157
+ ## Citation
158
 
159
+ If you use this model in your research, please cite:
160
 
161
+ ```bibtex
162
+ @misc{eagle0504-blip-vqa-2025,
163
+ title={BLIP VQA Fine-tuned Model - Draft 1},
164
+ author={eagle0504},
165
+ year={2025},
166
+ url={https://huggingface.co/eagle0504/blip-vqa-finetuned-draft-1}
167
+ }
168
+ ```
169
 
170
+ ## Model Card Authors
171
 
172
+ eagle0504 - Principal AI Engineer at FICO
173
 
174
  ## Model Card Contact
175
 
176
+ https://huggingface.co/eagle0504