--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - generated_from_trainer datasets: - dsaunders23/ChessAlpacaPrediction model-index: - name: outputs/mymodel results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 datasets: - path: dsaunders23/ChessAlpacaPrediction type: alpaca output_dir: ./outputs/mymodel sequence_len: 4096 adapter: lora lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 1 optimizer: adamw_bnb_8bit learning_rate: 0.0002 load_in_8bit: true train_on_inputs: false bf16: auto ```

# outputs/mymodel This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the dsaunders23/ChessAlpacaPrediction dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0