update code example to Haystack 2.x, new tutorial link, website link, twitter link, Haystack description (#27)
Browse files- update code example to Haystack 2.x, new tutorial link, website link, twitter link, Haystack description (e451d6d880fb9ce07fda3f8126c45be5c72a5241)
README.md
CHANGED
|
@@ -142,9 +142,10 @@ base_model:
|
|
| 142 |
- FacebookAI/roberta-base
|
| 143 |
---
|
| 144 |
|
| 145 |
-
# roberta-base for QA
|
| 146 |
|
| 147 |
-
This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
|
|
|
|
| 148 |
|
| 149 |
|
| 150 |
## Overview
|
|
@@ -153,7 +154,7 @@ This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tune
|
|
| 153 |
**Downstream-task:** Extractive QA
|
| 154 |
**Training data:** SQuAD 2.0
|
| 155 |
**Eval data:** SQuAD 2.0
|
| 156 |
-
**Code:** See [an example QA pipeline
|
| 157 |
**Infrastructure**: 4x Tesla v100
|
| 158 |
|
| 159 |
## Hyperparameters
|
|
@@ -170,19 +171,30 @@ doc_stride=128
|
|
| 170 |
max_query_length=64
|
| 171 |
```
|
| 172 |
|
| 173 |
-
## Using a distilled model instead
|
| 174 |
-
Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model.
|
| 175 |
-
|
| 176 |
## Usage
|
| 177 |
|
| 178 |
### In Haystack
|
| 179 |
-
Haystack is an
|
|
|
|
| 180 |
```python
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
```
|
| 185 |
-
For a complete example
|
| 186 |
|
| 187 |
### In Transformers
|
| 188 |
```python
|
|
@@ -236,8 +248,7 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
|
|
| 236 |
</div>
|
| 237 |
</div>
|
| 238 |
|
| 239 |
-
[deepset](http://deepset.ai/) is the company behind the open-source
|
| 240 |
-
|
| 241 |
|
| 242 |
Some of our other work:
|
| 243 |
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
|
@@ -250,6 +261,6 @@ Some of our other work:
|
|
| 250 |
|
| 251 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
| 252 |
|
| 253 |
-
[Twitter](https://twitter.com/
|
| 254 |
|
| 255 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
|
| 142 |
- FacebookAI/roberta-base
|
| 143 |
---
|
| 144 |
|
| 145 |
+
# roberta-base for Extractive QA
|
| 146 |
|
| 147 |
+
This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
|
| 148 |
+
We have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). It has a comparable prediction quality and runs at twice the speed of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2).
|
| 149 |
|
| 150 |
|
| 151 |
## Overview
|
|
|
|
| 154 |
**Downstream-task:** Extractive QA
|
| 155 |
**Training data:** SQuAD 2.0
|
| 156 |
**Eval data:** SQuAD 2.0
|
| 157 |
+
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
|
| 158 |
**Infrastructure**: 4x Tesla v100
|
| 159 |
|
| 160 |
## Hyperparameters
|
|
|
|
| 171 |
max_query_length=64
|
| 172 |
```
|
| 173 |
|
|
|
|
|
|
|
|
|
|
| 174 |
## Usage
|
| 175 |
|
| 176 |
### In Haystack
|
| 177 |
+
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
|
| 178 |
+
To load and run the model with [Haystack version 2.x](https://github.com/deepset-ai/haystack/):
|
| 179 |
```python
|
| 180 |
+
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
|
| 181 |
+
|
| 182 |
+
from haystack import Document
|
| 183 |
+
from haystack.components.readers import ExtractiveReader
|
| 184 |
+
|
| 185 |
+
docs = [
|
| 186 |
+
Document(content="Python is a popular programming language"),
|
| 187 |
+
Document(content="python ist eine beliebte Programmiersprache"),
|
| 188 |
+
]
|
| 189 |
+
|
| 190 |
+
reader = ExtractiveReader(model="deepset/roberta-base-squad2")
|
| 191 |
+
reader.warm_up()
|
| 192 |
+
|
| 193 |
+
question = "What is a popular programming language?"
|
| 194 |
+
result = reader.run(query=question, documents=docs)
|
| 195 |
+
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
|
| 196 |
```
|
| 197 |
+
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
|
| 198 |
|
| 199 |
### In Transformers
|
| 200 |
```python
|
|
|
|
| 248 |
</div>
|
| 249 |
</div>
|
| 250 |
|
| 251 |
+
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
|
|
|
|
| 252 |
|
| 253 |
Some of our other work:
|
| 254 |
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
|
|
|
| 261 |
|
| 262 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
| 263 |
|
| 264 |
+
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/)
|
| 265 |
|
| 266 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|