File size: 25,290 Bytes
ccfcf1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a1b95
2167cfc
 
 
 
 
ccfcf1c
2167cfc
ccfcf1c
 
2167cfc
 
ccfcf1c
2167cfc
 
 
 
 
ccfcf1c
2167cfc
 
 
 
ccfcf1c
 
2167cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d2372
2167cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccfcf1c
 
2167cfc
 
ccfcf1c
2167cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccfcf1c
2167cfc
ccfcf1c
 
 
 
 
2167cfc
 
ccfcf1c
2167cfc
 
 
 
ccfcf1c
2167cfc
 
 
ccfcf1c
2167cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a1b95
ccfcf1c
 
26a1b95
 
ccfcf1c
 
26a1b95
 
ccfcf1c
 
2167cfc
26a1b95
 
ccfcf1c
2167cfc
26a1b95
2167cfc
ccfcf1c
2167cfc
26a1b95
2167cfc
ccfcf1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167cfc
 
 
 
 
a1d2372
2167cfc
 
 
ccfcf1c
2167cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccfcf1c
2167cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d2372
 
2167cfc
 
ccfcf1c
2167cfc
 
 
 
 
ccfcf1c
2167cfc
 
 
 
 
ccfcf1c
a1d2372
 
 
 
ccfcf1c
a1d2372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccfcf1c
a1d2372
ccfcf1c
 
 
a1d2372
 
 
ccfcf1c
a1d2372
 
 
 
 
 
ccfcf1c
a1d2372
 
ccfcf1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d2372
ccfcf1c
 
 
 
 
 
 
 
 
a1d2372
ccfcf1c
 
 
 
 
 
a1d2372
2167cfc
 
 
 
 
a1d2372
 
 
 
 
 
 
 
2167cfc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
---

language:
- en
license: mit
task_categories:
- robotics
tags:
- agent
- robotics
- benchmark
- environment
- underwater
- multi-modal
- mllm
- large-language-models
size_categories:
- n<1K
---


<h1 align="center"> 🌊 OceanGym 🦾 </h1>
<h3 align="center"> A Benchmark Environment for Underwater Embodied Agents </h3>

<p align="center">
  🌐 <a href="https://oceangpt.github.io/OceanGym" target="_blank">Home Page</a>
  πŸ“„ <a href="https://arxiv.org/abs/2509.26536" target="_blank">ArXiv Paper</a>
  πŸ€— <a href="https://huggingface.co/datasets/zjunlp/OceanGym" target="_blank">Hugging Face</a>
  ☁️ <a href="https://drive.google.com/file/d/1EfKHeiyQD5eoJ6-EsiJHuIdBRM5Ope5A/view?usp=drive_link" target="_blank">Google Drive</a>
  ☁️ <a href="https://pan.baidu.com/s/16h86huHLeFGAKatRWvLrFQ?pwd=wput" target="_blank">Baidu Drive</a>
</p>

  <img src="asset/img/o1.png" align=center>

**OceanGym** is a high-fidelity embodied underwater environment that simulates a realistic ocean setting with diverse scenes. As illustrated in figure, OceanGym establishes a robust benchmark for evaluating autonomous agents through a series of challenging tasks, encompassing various perception analyses and decision-making navigation. The platform facilitates these evaluations by supporting multi-modal perception and providing action spaces for continuous control.

# πŸ’ Acknowledgement

OceanGym environment is built upon Unreal Engine (UE) 5.3, with certain components developed by drawing inspiration from and partially based on [HoloOcean](https://github.com/byu-holoocean). We sincerely acknowledge their valuable contribution.


# πŸ”” News

- 10-2025, we released the initial version of OceanGym along with the accompanying [paper](https://arxiv.org/abs/2509.26536).
- 04-2025, we launched the OceanGym project.

---

**Contents:**
- [πŸ’ Acknowledgement](#-acknowledgement)
- [πŸ”” News](#-news)
- [πŸ“Ί Quick Start](#-quick-start)
  - [Decision Task](#decision-task)
  - [Perception Task](#perception-task)
- [βš™οΈ Set up Environment](#️-set-up-environment)
  - [Clone HoloOcean](#clone-holoocean)
  - [Packaged Installation](#packaged-installation)
  - [Add World Files](#add-world-files)
  - [Open the World](#open-the-world)
- [🧠 Decision Task](#-decision-task)
  - [Target Object Locations](#target-object-locations)
  - [Evaluation Criteria](#evaluation-criteria)
- [πŸ‘€ Perception Task](#-perception-task)
  - [Using the Bench to Eval](#using-the-bench-to-eval)
    - [Import Data](#import-data)
    - [Set your Model Parameters](#set-your-model-parameters)
    - [Simple Multi-views](#simple-multi-views)
    - [Multi-views with Sonar](#multi-views-with-sonar)
    - [Multi-views add Sonar Examples](#multi-views-add-sonar-examples)
  - [Collecting Image Data](#collecting-image-data)
    - [Modify Configuration File](#modify-configuration-file)
    - [Collect Camera Images Only](#collect-camera-images-only)
    - [Collect Camera and Sonar Images](#collect-camera-and-sonar-images)
- [⏱️ Results](#️-results)
  - [Decision Task](#decision-task-1)
  - [Perception Task](#perception-task-1)
- [πŸ“š Datasets](#-datasets)
- [🚩 Citation](#-citation)

# πŸ“Ί Quick Start

Install the experimental code environment using pip:

```bash
pip install -r requirements.txt
```

## Decision Task

> Only the environment is ready! Build the environment based on [here](#️-set-up-environment).

**Step 1: Run a Task Script**

   For example, to run task 4:

   ```bash
   python decision\tasks\task4.py
   ```

   Follow the keyboard instructions or switch to LLM mode for automatic decision-making.


**Step 2: Keyboard Control Guide**

   | Key         | Action                        |
   |-------------|------------------------------|
   | W           | Move Forward                 |
   | S           | Move Backward                |
   | A           | Move Left                    |
   | D           | Move Right                   |
   | J           | Turn Left                    |
   | L           | Turn Right                   |
   | I           | Move Up                      |
   | K           | Move Down                    |
   | M           | Switch to LLM Mode           |
   | Q           | Exit                         |

   > You can use WASD for movement, J/L for turning, I/K for up/down.
   > Press `M` to switch to large language model mode (may cause temporary lag).
   > Press `Q` to exit.

**Step 3: View Results**

   Logs and memory files are automatically saved in the `log/` and `memory/` directories.

**Step 4: Evaluate the results**

   Place the generated `memory` and `important_memory` files into the corresponding `point` folders.
   Then, set the evaluation paths in the `evaluate.py` file.

   We provide 6 experimental evaluation paths. In `evaluate.py`, you can configure them as follows:

   ```python
   eval_roots = [
       os.path.join(eval_root, "main", "gpt4omini"),
       os.path.join(eval_root, "main", "gemini"),
       os.path.join(eval_root, "main", "qwen"),
       os.path.join(eval_root, "migration", "gpt4o"),
       os.path.join(eval_root, "migration", "qwen"),
       os.path.join(eval_root, "scale", "qwen"),
   ]
   ```

   To run the evaluation:

   ```bash
   python decision\utils\evaluate.py
   ```

   The generated results will be saved under the `\eval\decision` folder.

## Perception Task

> All commands are applicable to **Linux**, so if you using **Windows**, you need to change the corresponding path representation (especially the slash).

**Step 1: Prepare the dataset**

After downloading from [Hugging Face](https://huggingface.co/datasets/zjunlp/OceanGym/tree/main/data/perception) or [Google Drive](https://drive.google.com/drive/folders/1H7FTbtOCKTIEGp3R5RNsWvmxZ1oZxQih), put it into the `data/perception` folder.

**Step 2: Select model parameters**

| parameter | function |
| ---| --- |
| model_template | The large language model message queue template you selected. |
| model_name_or_path | If it is an API model, it is the model name; if it is a local model, it is the path. |
| api_key | If it is an API model, enter your key. |
| base_url | If it is an API model, enter its baseful URL. |

Now we only support OpenAI, Google Gemma, Qwen and OpenBMB.

```bash
MODELS_TEMPLATE="Yours"
MODEL_NAME_OR_PATH="Yours"
API_KEY="Yours"
BASE_URL="Yours"
```

**Step 3: Run the experiments**

| parameter | function |
| ---| --- |
| exp_name | Customize the name of the experiment to save the results. |
| exp_idx | Select the experiment number, or enter "all" to select all. |
| exp_json | JSON file containing the experiment label data. |
| images_dir | The folder where the experimental image data is stored. |

For the experimental types, We designed (1) multi-view perception task and (2) context-based perception task.

For the lighting conditions, We designed (1) high illumination and (2) low illumination.

For the auxiliary sonar, We designed (1) without sonar image (2) zero-shot sonar image and (3) sonar image with few sonar example.

Such as this command is used to evaluate the **multi-view** perception task under **high** illumination:


```bash
python perception/eval/mv.py \
    --exp_name Result_MV_highLight_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/highLight.json" \
    --images_dir "/data/perception/highLight" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

For more patterns about perception tasks, please read [this](#-perception-task) part carefully.

# βš™οΈ Set up Environment

This project is based on the HoloOcean environment. πŸ’

> We have placed a simplified version here. If you encounter any detailed issues, please refer to the [original installation document](https://byu-holoocean.github.io/holoocean-docs/v2.1.0/usage/installation.html).


## Install the OceanGym_large.zip 

From 
  ☁️ <a href="https://drive.google.com/file/d/1EfKHeiyQD5eoJ6-EsiJHuIdBRM5Ope5A/view?usp=drive_link" target="_blank">Google Drive</a>
  ☁️ <a href="https://pan.baidu.com/s/16h86huHLeFGAKatRWvLrFQ?pwd=wput" target="_blank">Baidu Drive</a>
  download the **OceanGym_large.zip** And extract it to the folder you want
  
## Packaged Installation

1. Python Library

From the cloned repository, install the Python package by doing the following:

```bash
cd OceanGym_large/client
pip install .
```

2. Worlds Packages

Install the package by running the following Python commands:

```python
import holoocean
holoocean.install("Ocean")
```

To do these steps in a single console command, use:

```bash
python -c "import holoocean; holoocean.install('Ocean')"
```

## Add World Files

Place the JSON config file from `asset/decision/map_config` or `asset\perception\map_config` into some place like:

(Windows)

```
C:\Users\Windows\AppData\Local\holoocean\2.0.0\worlds\Ocean
```

## Open the World

**1. If you're use it in first time, you have to compile it**

  1-1. find the Holodeck.uproject in **engine** folder
  
  <img src="asset/img/pic1.png" style="width: 60%; height: auto;" align="center">

  1-2. Right-click and select:Generate Visual Studio project files
  
  <img src="asset/img/pic2.png" style="width: 60%; height: auto;" align="center">

  1-3. If the version is not 5.3.2,please choose the Switch Unreal Engine Version
  
  <img src="asset/img/pic3.png" style="width: 60%; height: auto;" align="center">

  1-4. Then open the project
  
  <img src="asset/img/pic4.png" style="width: 60%; height: auto;" align="center">

**2. Then find the `HAIDI` map in `demo` directory**

  <img src="asset/img/pic5.png" style="width: 60%; height: auto;" align="center">

**3. Run the project**

  <img src="asset/img/pic6.png" style="width: 60%; height: auto;" align="center">

**4. Run the code**

 When the ue editor shows as follows, namely: **"LogD3D12RHI: Cannot end block when stack is empty"** , it indicates that the scene has been loaded. 
 
  <img src="asset/img/pic7.png" style="width: 60%; height: auto;" align="center">
  
Then you can start the code, either directly using vscode 

 <img src="asset/img/pic8.png" style="width: 60%; height: auto;" align="center">
or by entering the following command in the command line

```bash
python decision\tasks\task4.py
```

# 🧠 Decision Task

> All commands are applicable to **Windows** only, because it requires full support from the `UE5 Engine`.

The decision experiment can be run with reference to the [Quick Start](#-quick-start).

## Target Object Locations

We have provided eight tasks. For specific task descriptions, please refer to the [paper](https://arxiv.org/abs/2509.26536).

The following are the coordinates for each target object in the environment (in meters):

- **MINING ROBOT**:
  (-71, 149, -61), (325, -47, -83)
- **OIL PIPELINE**:
  (345, -165, -32), (539, -233, -42), (207, -30, -66)
- **OIL DRUM**:
  (447, -203, -98)
- **SUNKEN SHIP**:
  (429, -151, -69), (78, -11, -47)
- **ELECTRICAL BOX**:
  (168, 168, -65)
- **WIND POWER STATION**:
  (207, -30, -66)
- **AIRCRAFT WRECKAGE**:
  (40, -9, -54), (296, 78, -70), (292, -186, -67)
- **H-MARKED LANDING PLATFORM**:
  (267, 33, -80)

---

## Evaluation Criteria

1. If the target is not found, use the final stopping position for evaluation.
2. If the target is found, use the closest distance to any target point.
3. For found targets:
   - Minimum distance ≀ 30: full score
   - 30 < distance < 100: score decreases proportionally
   - Distance β‰₯ 100: score is 0
4. Score composition:
   - One point: 100
   - Two points: 60 / 40
   - Three points: 60 / 20 / 20

# πŸ‘€ Perception Task

## Using the Bench to Eval

> All commands are applicable to **Linux**, so if you using **Windows**, you need to change the corresponding path representation (especially the slash).
>
> Now we only support OpenAI, Google Gemma, Qwen and OpenBMB. If you need to customize the model, please contact the author.

### Import Data

First, you need download our data from [Hugging Face](https://huggingface.co/datasets/zjunlp/OceanGym) or [Google Drive](https://drive.google.com/drive/folders/1H7FTbtOCKTIEGp3R5RNsWvmxZ1oZxQih).

And then create a new `data` folder in the project root directory:

```bash
mkdir -p data/perception
```

Finally, put the downloaded data into the corresponding folder.

### Set your Model Parameters

Just open a terminal in the root directory and set it directly.

| parameter | function |
| ---| --- |
| model_template | The large language model message queue template you selected. |
| model_name_or_path | If it is an API model, it is the model name; if it is a local model, it is the path. |
| api_key | If it is an API model, enter your key. |
| base_url | If it is an API model, enter its baseful URL. |

```bash
MODELS_TEMPLATE="Yours"
MODEL_NAME_OR_PATH="Yours"
API_KEY="Yours"
BASE_URL="Yours"
```

### Simple Multi-views

All of these scripts evaluate the perception task, and the parameters are as follows:

| parameter | function |
| ---| --- |
| exp_name | Customize the name of the experiment to save the results. |
| exp_idx | Select the experiment number, or enter "all" to select all. |
| exp_json | JSON file containing the experiment label data. |
| images_dir | The folder where the experimental image data is stored. |

This command is used to evaluate the **multi-view** perception task under **high** illumination:

```bash
python perception/eval/mv.py \
    --exp_name Result_MV_highLight_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/highLight.json" \
    --images_dir "/data/perception/highLight" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **context-based** perception task under **high** illumination:

```bash
python perception/eval/mv.py \
    --exp_name Result_MV_highLightContext_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/highLightContext.json" \
    --images_dir "/data/perception/highLightContext" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **multi-view** perception task under **low** illumination:

```bash
python perception/eval/mv.py \
    --exp_name Result_MV_lowLight_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/lowLight.json" \
    --images_dir "/data/perception/lowLight" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **context-based** perception task under **low** illumination:

```bash
python perception/eval/mv.py \
    --exp_name Result_MV_lowLightContext_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/lowLightContext.json" \
    --images_dir "/data/perception/lowLightContext" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

### Multi-views with Sonar

This command is used to evaluate the **multi-view** perception task under **high** illumination with **sonar** image:

```bash
python perception/eval/mvs.py \
    --exp_name Result_MVwS_highLight_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/highLight.json" \
    --images_dir "/data/perception/highLight" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **context-based** perception task under **high** illumination with **sonar** image:

```bash
python perception/eval/mvs.py \
    --exp_name Result_MVwS_highLightContext_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/highLightContext.json" \
    --images_dir "/data/perception/highLightContext" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **multi-view** perception task under **low** illumination with **sonar** image:

```bash
python perception/eval/mvs.py \
    --exp_name Result_MVwS_lowLight_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/lowLight.json" \
    --images_dir "/data/perception/lowLight" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **context-based** perception task under **low** illumination with **sonar** image:

```bash
python perception/eval/mvs.py \
    --exp_name Result_MVwS_lowLightContext_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/lowLightContext.json" \
    --images_dir "/data/perception/lowLightContext" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

### Multi-views add Sonar Examples

This command is used to evaluate the **multi-view** perception task under **high** illumination with **sona** image **examples**:

```bash
python perception/eval/mvsex.py \
    --exp_name Result_MVwSss_highLight_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/highLight.json" \
    --images_dir "/data/perception/highLight" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **context-based** perception task under **high** illumination with **sona** image **examples**:

```bash
python perception/eval/mvsex.py \
    --exp_name Result_MVwSss_highLightContext_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/highLightContext.json" \
    --images_dir "/data/perception/highLightContext" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **multi-view** perception task under **low** illumination with **sona** image **examples**:

```bash
python perception/eval/mvsex.py \
    --exp_name Result_MVwSss_lowLight_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/lowLight.json" \
    --images_dir "/data/perception/lowLight" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

This command is used to evaluate the **context-based** perception task under **low** illumination with **sona** image **examples**:

```bash
python perception/eval/mvsex.py \
    --exp_name Result_MVwSss_lowLightContext_00 \
    --exp_idx "all" \
    --exp_json "/data/perception/lowLightContext.json" \
    --images_dir "/data/perception/lowLightContext" \
    --model_template $MODELS_TEMPLATE \
    --model_name_or_path $MODEL_NAME_OR_PATH \
    --api_key $API_KEY \
    --base_url $BASE_URL
```

## Collecting Image Data

> This part is optional. Only use when you need to collect pictures by yourself.

### Modify Configuration File

The sample configuration files can be found in `asset/perception/map_config`. You need to copy this and paste it into your HoloOcean project's configuration.

### Collect Camera Images Only

This command is used to collect **camera** images only, and the parameters are as follows:

| parameter | function |
| ---| --- |
| scenario | The name of the json configuration file you want to replace. |
| task_name | Customize the name of the experiment to save the results. |
| rgbcamera | The camera directions you can choose. If select all, enter "all". |

```bash
python perception/task/init_map.py \
    --scenario without_sonar \
    --task_name "Exp_Camera_Only" \
    --rgbcamera "all"
```

### Collect Camera and Sonar Images

This command is used to collect both **camera** images and **sonar** images at same time:

```bash
python perception/task/init_map_with_sonar.py \
    --scenario with_sonar \
    --task_name "Exp_Add_Sonar" \
    --rgbcamera "FrontCamera"
```

# ⏱️ Results

**We provide the trajectory data of OceanGym’s various task evaluations at the [next section](#-datasets), enabling readers to analyze and reproduce the results.**

## Decision Task

  <img src="asset/img/t1.png" align=center>

- This table is the performance in decision tasks requiring autonomous completion by MLLM-driven agents.

## Perception Task

  <img src="asset/img/t2.png" align=center>

- This table is the performance of perception tasks across different models and conditions.
- Values represent accuracy percentages.
- Adding sonar means using both RGB and sonar images.

# πŸ“š DataSets
**The link to the dataset is as follows**\
 ☁️ <a href="https://drive.google.com/drive/folders/1VhrvhvbWvnaS4EyeyaV1fmTQ6gPo8GCN?usp=drive_link" target="_blank">Google Drive</a>
- Decision Task

```
decision_dataset
β”œβ”€β”€ main
β”‚ β”œβ”€β”€ gpt4omini
β”‚ β”‚ β”œβ”€β”€ task1
β”‚ β”‚ β”‚ β”œβ”€β”€ point1
β”‚ β”‚ β”‚ β”‚ β”œβ”€β”€ llm_output_...log
β”‚ β”‚ β”‚ β”‚ β”œβ”€β”€ memory_...json
β”‚ β”‚ β”‚ β”‚ └── important_memory_...json
β”‚ β”‚ β”‚ └── ... (other data points like point2, point3...)
β”‚ β”‚ └── ... (other tasks like task2, task3...)
β”‚ β”œβ”€β”€ gemini
β”‚ β”‚ └── ... (structure is the same as gpt4omini)
β”‚ └── qwen
β”‚ └── ... (structure is the same as gpt4omini)
β”‚
β”œβ”€β”€ migration
β”‚ β”œβ”€β”€ gpt4o
β”‚ β”‚ └── ... (structure is the same as above)
β”‚ └── qwen
β”‚ └── ... (structure is the same as above)
β”‚
└── scale
  β”œβ”€β”€ qwen
  └── gpt4omini
```
### **How to use this dataset**

In the main folder, you can see the data generated by the three models corresponding to the three folders. Within each model folder, there are task1-12 task folders, and within the task folders, there are point1-3 folders, representing the results generated from different starting points. Among them, point1 and point2 are **fixed starting points**, which are respectively [144 ,-114,-63] and [350 ,-118 -7] and point3 is a **random point**\
In the scale experiment, Point1-4 represent different task durations, with point1 being **1 hour**, point2 **1.5 hours**, point3 **2 hours**, and point4 **3 hours**. Note that the actual duration may vary to some extent due to the influence of large model calls, network fluctuations, and other factors\
If you want to evaluate the files generated by yourself, please place the corresponding **memory_{time_stamp}.json** and **important_memory_{time_stamp}.json** files in the corresponding folders

- Perception Task

```
perception_dataset
β”œβ”€β”€ data
β”‚ β”œβ”€β”€ highLight
β”‚ β”œβ”€β”€ highLightContext
β”‚ β”œβ”€β”€ lowLight
β”‚ β”œβ”€β”€ lowLightContext
β”‚ └── ... (label files)
β”‚
└── result
└── ... (detail result fils)
```

### **How to use this dataset**

In the main folder, `data` is the test data of perception task, `result` is the detail results of this [table](#perception-task-1).

Below the folder `data`, there are 4 folders and 4 JSON files. Each folder contains test data for each perception task, and each JSON file is the label of its corresponding folder.

# πŸ”§ Develop OceanGym
OceanGym supports custom scenarios. You can freely exert yourself in the scenarios we provide!\
You can find the assets you need in the **ue5 fab Mall** and add them to OceanGym to test the exploration ability of the robot!\
Or modify parameters such as **terrain and lighting** to simulate the weather in different scenarios!

### Modify lighting

Step 1:
Find the **DirectionalLight** in outliner

Step 2:
Choose the details of **DirectionalLight**

Step 3:
Modify the data of **light** as per your requirements

 <img src="asset/img/pic9.png" style="width: 60%; height: auto;" align="center">

**Notice**\
In our paper, we simulate low-light and high-light environments, where the Intensity of light is **10.0lux** in the **high-light** environment
Intensity of light is **1.5lux** in a **low-light** environment

### Modify start position
Step 1:
Find the initial config file **OceanGym.json** in
```
C:\Users\Windows\AppData\Local\holoocean\2.0.0\worlds\Ocean
```
Step 2:
Modify the data of **location** as per your requirements

 <img src="asset/img/pic10.png" style="width: 60%; height: auto;" align="center">

 If you want to develop more functions, you can visit [the official website of holoocean](https://byu-holoocean.github.io/holoocean-docs/v2.0.1/develop/develop.html)

# 🚩 Citation

If this OceanGym paper or benchmark is helpful, please kindly cite as this:

```bibtex
@misc{xue2025oceangymbenchmarkenvironmentunderwater,
      title={OceanGym: A Benchmark Environment for Underwater Embodied Agents}, 
      author={Yida Xue and Mingjun Mao and Xiangyuan Ru and Yuqi Zhu and Baochang Ren and Shuofei Qiao and Mengru Wang and Shumin Deng and Xinyu An and Ningyu Zhang and Ying Chen and Huajun Chen},
      year={2025},
      eprint={2509.26536},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.26536}, 
}
```

πŸ’ Thanks again!