File size: 25,290 Bytes
ccfcf1c 26a1b95 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc a1d2372 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc 26a1b95 ccfcf1c 26a1b95 ccfcf1c 26a1b95 ccfcf1c 2167cfc 26a1b95 ccfcf1c 2167cfc 26a1b95 2167cfc ccfcf1c 2167cfc 26a1b95 2167cfc ccfcf1c 2167cfc a1d2372 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc a1d2372 2167cfc ccfcf1c 2167cfc ccfcf1c 2167cfc ccfcf1c a1d2372 ccfcf1c a1d2372 ccfcf1c a1d2372 ccfcf1c a1d2372 ccfcf1c a1d2372 ccfcf1c a1d2372 ccfcf1c a1d2372 ccfcf1c a1d2372 ccfcf1c a1d2372 2167cfc a1d2372 2167cfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
---
language:
- en
license: mit
task_categories:
- robotics
tags:
- agent
- robotics
- benchmark
- environment
- underwater
- multi-modal
- mllm
- large-language-models
size_categories:
- n<1K
---
<h1 align="center"> π OceanGym π¦Ύ </h1>
<h3 align="center"> A Benchmark Environment for Underwater Embodied Agents </h3>
<p align="center">
π <a href="https://oceangpt.github.io/OceanGym" target="_blank">Home Page</a>
π <a href="https://arxiv.org/abs/2509.26536" target="_blank">ArXiv Paper</a>
π€ <a href="https://huggingface.co/datasets/zjunlp/OceanGym" target="_blank">Hugging Face</a>
βοΈ <a href="https://drive.google.com/file/d/1EfKHeiyQD5eoJ6-EsiJHuIdBRM5Ope5A/view?usp=drive_link" target="_blank">Google Drive</a>
βοΈ <a href="https://pan.baidu.com/s/16h86huHLeFGAKatRWvLrFQ?pwd=wput" target="_blank">Baidu Drive</a>
</p>
<img src="asset/img/o1.png" align=center>
**OceanGym** is a high-fidelity embodied underwater environment that simulates a realistic ocean setting with diverse scenes. As illustrated in figure, OceanGym establishes a robust benchmark for evaluating autonomous agents through a series of challenging tasks, encompassing various perception analyses and decision-making navigation. The platform facilitates these evaluations by supporting multi-modal perception and providing action spaces for continuous control.
# π Acknowledgement
OceanGym environment is built upon Unreal Engine (UE) 5.3, with certain components developed by drawing inspiration from and partially based on [HoloOcean](https://github.com/byu-holoocean). We sincerely acknowledge their valuable contribution.
# π News
- 10-2025, we released the initial version of OceanGym along with the accompanying [paper](https://arxiv.org/abs/2509.26536).
- 04-2025, we launched the OceanGym project.
---
**Contents:**
- [π Acknowledgement](#-acknowledgement)
- [π News](#-news)
- [πΊ Quick Start](#-quick-start)
- [Decision Task](#decision-task)
- [Perception Task](#perception-task)
- [βοΈ Set up Environment](#οΈ-set-up-environment)
- [Clone HoloOcean](#clone-holoocean)
- [Packaged Installation](#packaged-installation)
- [Add World Files](#add-world-files)
- [Open the World](#open-the-world)
- [π§ Decision Task](#-decision-task)
- [Target Object Locations](#target-object-locations)
- [Evaluation Criteria](#evaluation-criteria)
- [π Perception Task](#-perception-task)
- [Using the Bench to Eval](#using-the-bench-to-eval)
- [Import Data](#import-data)
- [Set your Model Parameters](#set-your-model-parameters)
- [Simple Multi-views](#simple-multi-views)
- [Multi-views with Sonar](#multi-views-with-sonar)
- [Multi-views add Sonar Examples](#multi-views-add-sonar-examples)
- [Collecting Image Data](#collecting-image-data)
- [Modify Configuration File](#modify-configuration-file)
- [Collect Camera Images Only](#collect-camera-images-only)
- [Collect Camera and Sonar Images](#collect-camera-and-sonar-images)
- [β±οΈ Results](#οΈ-results)
- [Decision Task](#decision-task-1)
- [Perception Task](#perception-task-1)
- [π Datasets](#-datasets)
- [π© Citation](#-citation)
# πΊ Quick Start
Install the experimental code environment using pip:
```bash
pip install -r requirements.txt
```
## Decision Task
> Only the environment is ready! Build the environment based on [here](#οΈ-set-up-environment).
**Step 1: Run a Task Script**
For example, to run task 4:
```bash
python decision\tasks\task4.py
```
Follow the keyboard instructions or switch to LLM mode for automatic decision-making.
**Step 2: Keyboard Control Guide**
| Key | Action |
|-------------|------------------------------|
| W | Move Forward |
| S | Move Backward |
| A | Move Left |
| D | Move Right |
| J | Turn Left |
| L | Turn Right |
| I | Move Up |
| K | Move Down |
| M | Switch to LLM Mode |
| Q | Exit |
> You can use WASD for movement, J/L for turning, I/K for up/down.
> Press `M` to switch to large language model mode (may cause temporary lag).
> Press `Q` to exit.
**Step 3: View Results**
Logs and memory files are automatically saved in the `log/` and `memory/` directories.
**Step 4: Evaluate the results**
Place the generated `memory` and `important_memory` files into the corresponding `point` folders.
Then, set the evaluation paths in the `evaluate.py` file.
We provide 6 experimental evaluation paths. In `evaluate.py`, you can configure them as follows:
```python
eval_roots = [
os.path.join(eval_root, "main", "gpt4omini"),
os.path.join(eval_root, "main", "gemini"),
os.path.join(eval_root, "main", "qwen"),
os.path.join(eval_root, "migration", "gpt4o"),
os.path.join(eval_root, "migration", "qwen"),
os.path.join(eval_root, "scale", "qwen"),
]
```
To run the evaluation:
```bash
python decision\utils\evaluate.py
```
The generated results will be saved under the `\eval\decision` folder.
## Perception Task
> All commands are applicable to **Linux**, so if you using **Windows**, you need to change the corresponding path representation (especially the slash).
**Step 1: Prepare the dataset**
After downloading from [Hugging Face](https://huggingface.co/datasets/zjunlp/OceanGym/tree/main/data/perception) or [Google Drive](https://drive.google.com/drive/folders/1H7FTbtOCKTIEGp3R5RNsWvmxZ1oZxQih), put it into the `data/perception` folder.
**Step 2: Select model parameters**
| parameter | function |
| ---| --- |
| model_template | The large language model message queue template you selected. |
| model_name_or_path | If it is an API model, it is the model name; if it is a local model, it is the path. |
| api_key | If it is an API model, enter your key. |
| base_url | If it is an API model, enter its baseful URL. |
Now we only support OpenAI, Google Gemma, Qwen and OpenBMB.
```bash
MODELS_TEMPLATE="Yours"
MODEL_NAME_OR_PATH="Yours"
API_KEY="Yours"
BASE_URL="Yours"
```
**Step 3: Run the experiments**
| parameter | function |
| ---| --- |
| exp_name | Customize the name of the experiment to save the results. |
| exp_idx | Select the experiment number, or enter "all" to select all. |
| exp_json | JSON file containing the experiment label data. |
| images_dir | The folder where the experimental image data is stored. |
For the experimental types, We designed (1) multi-view perception task and (2) context-based perception task.
For the lighting conditions, We designed (1) high illumination and (2) low illumination.
For the auxiliary sonar, We designed (1) without sonar image (2) zero-shot sonar image and (3) sonar image with few sonar example.
Such as this command is used to evaluate the **multi-view** perception task under **high** illumination:
```bash
python perception/eval/mv.py \
--exp_name Result_MV_highLight_00 \
--exp_idx "all" \
--exp_json "/data/perception/highLight.json" \
--images_dir "/data/perception/highLight" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
For more patterns about perception tasks, please read [this](#-perception-task) part carefully.
# βοΈ Set up Environment
This project is based on the HoloOcean environment. π
> We have placed a simplified version here. If you encounter any detailed issues, please refer to the [original installation document](https://byu-holoocean.github.io/holoocean-docs/v2.1.0/usage/installation.html).
## Install the OceanGym_large.zip
From
βοΈ <a href="https://drive.google.com/file/d/1EfKHeiyQD5eoJ6-EsiJHuIdBRM5Ope5A/view?usp=drive_link" target="_blank">Google Drive</a>
βοΈ <a href="https://pan.baidu.com/s/16h86huHLeFGAKatRWvLrFQ?pwd=wput" target="_blank">Baidu Drive</a>
download the **OceanGym_large.zip** And extract it to the folder you want
## Packaged Installation
1. Python Library
From the cloned repository, install the Python package by doing the following:
```bash
cd OceanGym_large/client
pip install .
```
2. Worlds Packages
Install the package by running the following Python commands:
```python
import holoocean
holoocean.install("Ocean")
```
To do these steps in a single console command, use:
```bash
python -c "import holoocean; holoocean.install('Ocean')"
```
## Add World Files
Place the JSON config file from `asset/decision/map_config` or `asset\perception\map_config` into some place like:
(Windows)
```
C:\Users\Windows\AppData\Local\holoocean\2.0.0\worlds\Ocean
```
## Open the World
**1. If you're use it in first time, you have to compile it**
1-1. find the Holodeck.uproject in **engine** folder
<img src="asset/img/pic1.png" style="width: 60%; height: auto;" align="center">
1-2. Right-click and select:Generate Visual Studio project files
<img src="asset/img/pic2.png" style="width: 60%; height: auto;" align="center">
1-3. If the version is not 5.3.2,please choose the Switch Unreal Engine Version
<img src="asset/img/pic3.png" style="width: 60%; height: auto;" align="center">
1-4. Then open the project
<img src="asset/img/pic4.png" style="width: 60%; height: auto;" align="center">
**2. Then find the `HAIDI` map in `demo` directory**
<img src="asset/img/pic5.png" style="width: 60%; height: auto;" align="center">
**3. Run the project**
<img src="asset/img/pic6.png" style="width: 60%; height: auto;" align="center">
**4. Run the code**
When the ue editor shows as follows, namely: **"LogD3D12RHI: Cannot end block when stack is empty"** , it indicates that the scene has been loaded.
<img src="asset/img/pic7.png" style="width: 60%; height: auto;" align="center">
Then you can start the code, either directly using vscode
<img src="asset/img/pic8.png" style="width: 60%; height: auto;" align="center">
or by entering the following command in the command line
```bash
python decision\tasks\task4.py
```
# π§ Decision Task
> All commands are applicable to **Windows** only, because it requires full support from the `UE5 Engine`.
The decision experiment can be run with reference to the [Quick Start](#-quick-start).
## Target Object Locations
We have provided eight tasks. For specific task descriptions, please refer to the [paper](https://arxiv.org/abs/2509.26536).
The following are the coordinates for each target object in the environment (in meters):
- **MINING ROBOT**:
(-71, 149, -61), (325, -47, -83)
- **OIL PIPELINE**:
(345, -165, -32), (539, -233, -42), (207, -30, -66)
- **OIL DRUM**:
(447, -203, -98)
- **SUNKEN SHIP**:
(429, -151, -69), (78, -11, -47)
- **ELECTRICAL BOX**:
(168, 168, -65)
- **WIND POWER STATION**:
(207, -30, -66)
- **AIRCRAFT WRECKAGE**:
(40, -9, -54), (296, 78, -70), (292, -186, -67)
- **H-MARKED LANDING PLATFORM**:
(267, 33, -80)
---
## Evaluation Criteria
1. If the target is not found, use the final stopping position for evaluation.
2. If the target is found, use the closest distance to any target point.
3. For found targets:
- Minimum distance β€ 30: full score
- 30 < distance < 100: score decreases proportionally
- Distance β₯ 100: score is 0
4. Score composition:
- One point: 100
- Two points: 60 / 40
- Three points: 60 / 20 / 20
# π Perception Task
## Using the Bench to Eval
> All commands are applicable to **Linux**, so if you using **Windows**, you need to change the corresponding path representation (especially the slash).
>
> Now we only support OpenAI, Google Gemma, Qwen and OpenBMB. If you need to customize the model, please contact the author.
### Import Data
First, you need download our data from [Hugging Face](https://huggingface.co/datasets/zjunlp/OceanGym) or [Google Drive](https://drive.google.com/drive/folders/1H7FTbtOCKTIEGp3R5RNsWvmxZ1oZxQih).
And then create a new `data` folder in the project root directory:
```bash
mkdir -p data/perception
```
Finally, put the downloaded data into the corresponding folder.
### Set your Model Parameters
Just open a terminal in the root directory and set it directly.
| parameter | function |
| ---| --- |
| model_template | The large language model message queue template you selected. |
| model_name_or_path | If it is an API model, it is the model name; if it is a local model, it is the path. |
| api_key | If it is an API model, enter your key. |
| base_url | If it is an API model, enter its baseful URL. |
```bash
MODELS_TEMPLATE="Yours"
MODEL_NAME_OR_PATH="Yours"
API_KEY="Yours"
BASE_URL="Yours"
```
### Simple Multi-views
All of these scripts evaluate the perception task, and the parameters are as follows:
| parameter | function |
| ---| --- |
| exp_name | Customize the name of the experiment to save the results. |
| exp_idx | Select the experiment number, or enter "all" to select all. |
| exp_json | JSON file containing the experiment label data. |
| images_dir | The folder where the experimental image data is stored. |
This command is used to evaluate the **multi-view** perception task under **high** illumination:
```bash
python perception/eval/mv.py \
--exp_name Result_MV_highLight_00 \
--exp_idx "all" \
--exp_json "/data/perception/highLight.json" \
--images_dir "/data/perception/highLight" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **context-based** perception task under **high** illumination:
```bash
python perception/eval/mv.py \
--exp_name Result_MV_highLightContext_00 \
--exp_idx "all" \
--exp_json "/data/perception/highLightContext.json" \
--images_dir "/data/perception/highLightContext" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **multi-view** perception task under **low** illumination:
```bash
python perception/eval/mv.py \
--exp_name Result_MV_lowLight_00 \
--exp_idx "all" \
--exp_json "/data/perception/lowLight.json" \
--images_dir "/data/perception/lowLight" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **context-based** perception task under **low** illumination:
```bash
python perception/eval/mv.py \
--exp_name Result_MV_lowLightContext_00 \
--exp_idx "all" \
--exp_json "/data/perception/lowLightContext.json" \
--images_dir "/data/perception/lowLightContext" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
### Multi-views with Sonar
This command is used to evaluate the **multi-view** perception task under **high** illumination with **sonar** image:
```bash
python perception/eval/mvs.py \
--exp_name Result_MVwS_highLight_00 \
--exp_idx "all" \
--exp_json "/data/perception/highLight.json" \
--images_dir "/data/perception/highLight" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **context-based** perception task under **high** illumination with **sonar** image:
```bash
python perception/eval/mvs.py \
--exp_name Result_MVwS_highLightContext_00 \
--exp_idx "all" \
--exp_json "/data/perception/highLightContext.json" \
--images_dir "/data/perception/highLightContext" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **multi-view** perception task under **low** illumination with **sonar** image:
```bash
python perception/eval/mvs.py \
--exp_name Result_MVwS_lowLight_00 \
--exp_idx "all" \
--exp_json "/data/perception/lowLight.json" \
--images_dir "/data/perception/lowLight" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **context-based** perception task under **low** illumination with **sonar** image:
```bash
python perception/eval/mvs.py \
--exp_name Result_MVwS_lowLightContext_00 \
--exp_idx "all" \
--exp_json "/data/perception/lowLightContext.json" \
--images_dir "/data/perception/lowLightContext" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
### Multi-views add Sonar Examples
This command is used to evaluate the **multi-view** perception task under **high** illumination with **sona** image **examples**:
```bash
python perception/eval/mvsex.py \
--exp_name Result_MVwSss_highLight_00 \
--exp_idx "all" \
--exp_json "/data/perception/highLight.json" \
--images_dir "/data/perception/highLight" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **context-based** perception task under **high** illumination with **sona** image **examples**:
```bash
python perception/eval/mvsex.py \
--exp_name Result_MVwSss_highLightContext_00 \
--exp_idx "all" \
--exp_json "/data/perception/highLightContext.json" \
--images_dir "/data/perception/highLightContext" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **multi-view** perception task under **low** illumination with **sona** image **examples**:
```bash
python perception/eval/mvsex.py \
--exp_name Result_MVwSss_lowLight_00 \
--exp_idx "all" \
--exp_json "/data/perception/lowLight.json" \
--images_dir "/data/perception/lowLight" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
This command is used to evaluate the **context-based** perception task under **low** illumination with **sona** image **examples**:
```bash
python perception/eval/mvsex.py \
--exp_name Result_MVwSss_lowLightContext_00 \
--exp_idx "all" \
--exp_json "/data/perception/lowLightContext.json" \
--images_dir "/data/perception/lowLightContext" \
--model_template $MODELS_TEMPLATE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--api_key $API_KEY \
--base_url $BASE_URL
```
## Collecting Image Data
> This part is optional. Only use when you need to collect pictures by yourself.
### Modify Configuration File
The sample configuration files can be found in `asset/perception/map_config`. You need to copy this and paste it into your HoloOcean project's configuration.
### Collect Camera Images Only
This command is used to collect **camera** images only, and the parameters are as follows:
| parameter | function |
| ---| --- |
| scenario | The name of the json configuration file you want to replace. |
| task_name | Customize the name of the experiment to save the results. |
| rgbcamera | The camera directions you can choose. If select all, enter "all". |
```bash
python perception/task/init_map.py \
--scenario without_sonar \
--task_name "Exp_Camera_Only" \
--rgbcamera "all"
```
### Collect Camera and Sonar Images
This command is used to collect both **camera** images and **sonar** images at same time:
```bash
python perception/task/init_map_with_sonar.py \
--scenario with_sonar \
--task_name "Exp_Add_Sonar" \
--rgbcamera "FrontCamera"
```
# β±οΈ Results
**We provide the trajectory data of OceanGymβs various task evaluations at the [next section](#-datasets), enabling readers to analyze and reproduce the results.**
## Decision Task
<img src="asset/img/t1.png" align=center>
- This table is the performance in decision tasks requiring autonomous completion by MLLM-driven agents.
## Perception Task
<img src="asset/img/t2.png" align=center>
- This table is the performance of perception tasks across different models and conditions.
- Values represent accuracy percentages.
- Adding sonar means using both RGB and sonar images.
# π DataSets
**The link to the dataset is as follows**\
βοΈ <a href="https://drive.google.com/drive/folders/1VhrvhvbWvnaS4EyeyaV1fmTQ6gPo8GCN?usp=drive_link" target="_blank">Google Drive</a>
- Decision Task
```
decision_dataset
βββ main
β βββ gpt4omini
β β βββ task1
β β β βββ point1
β β β β βββ llm_output_...log
β β β β βββ memory_...json
β β β β βββ important_memory_...json
β β β βββ ... (other data points like point2, point3...)
β β βββ ... (other tasks like task2, task3...)
β βββ gemini
β β βββ ... (structure is the same as gpt4omini)
β βββ qwen
β βββ ... (structure is the same as gpt4omini)
β
βββ migration
β βββ gpt4o
β β βββ ... (structure is the same as above)
β βββ qwen
β βββ ... (structure is the same as above)
β
βββ scale
βββ qwen
βββ gpt4omini
```
### **How to use this dataset**
In the main folder, you can see the data generated by the three models corresponding to the three folders. Within each model folder, there are task1-12 task folders, and within the task folders, there are point1-3 folders, representing the results generated from different starting points. Among them, point1 and point2 are **fixed starting points**, which are respectively [144 ,-114,-63] and [350 ,-118 -7] and point3 is a **random point**\
In the scale experiment, Point1-4 represent different task durations, with point1 being **1 hour**, point2 **1.5 hours**, point3 **2 hours**, and point4 **3 hours**. Note that the actual duration may vary to some extent due to the influence of large model calls, network fluctuations, and other factors\
If you want to evaluate the files generated by yourself, please place the corresponding **memory_{time_stamp}.json** and **important_memory_{time_stamp}.json** files in the corresponding folders
- Perception Task
```
perception_dataset
βββ data
β βββ highLight
β βββ highLightContext
β βββ lowLight
β βββ lowLightContext
β βββ ... (label files)
β
βββ result
βββ ... (detail result fils)
```
### **How to use this dataset**
In the main folder, `data` is the test data of perception task, `result` is the detail results of this [table](#perception-task-1).
Below the folder `data`, there are 4 folders and 4 JSON files. Each folder contains test data for each perception task, and each JSON file is the label of its corresponding folder.
# π§ Develop OceanGym
OceanGym supports custom scenarios. You can freely exert yourself in the scenarios we provide!\
You can find the assets you need in the **ue5 fab Mall** and add them to OceanGym to test the exploration ability of the robot!\
Or modify parameters such as **terrain and lighting** to simulate the weather in different scenarios!
### Modify lighting
Step 1:
Find the **DirectionalLight** in outliner
Step 2:
Choose the details of **DirectionalLight**
Step 3:
Modify the data of **light** as per your requirements
<img src="asset/img/pic9.png" style="width: 60%; height: auto;" align="center">
**Notice**\
In our paper, we simulate low-light and high-light environments, where the Intensity of light is **10.0lux** in the **high-light** environment
Intensity of light is **1.5lux** in a **low-light** environment
### Modify start position
Step 1:
Find the initial config file **OceanGym.json** in
```
C:\Users\Windows\AppData\Local\holoocean\2.0.0\worlds\Ocean
```
Step 2:
Modify the data of **location** as per your requirements
<img src="asset/img/pic10.png" style="width: 60%; height: auto;" align="center">
If you want to develop more functions, you can visit [the official website of holoocean](https://byu-holoocean.github.io/holoocean-docs/v2.0.1/develop/develop.html)
# π© Citation
If this OceanGym paper or benchmark is helpful, please kindly cite as this:
```bibtex
@misc{xue2025oceangymbenchmarkenvironmentunderwater,
title={OceanGym: A Benchmark Environment for Underwater Embodied Agents},
author={Yida Xue and Mingjun Mao and Xiangyuan Ru and Yuqi Zhu and Baochang Ren and Shuofei Qiao and Mengru Wang and Shumin Deng and Xinyu An and Ningyu Zhang and Ying Chen and Huajun Chen},
year={2025},
eprint={2509.26536},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.26536},
}
```
π Thanks again! |