Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
init
Browse files- README.md +72 -0
- dataset/label.json +1 -0
- dataset/test.json +0 -0
- dataset/train.json +0 -0
- dataset/valid.json +0 -0
- mit_restaurant.py +67 -0
README.md
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license:
|
| 5 |
+
- other
|
| 6 |
+
multilinguality:
|
| 7 |
+
- monolingual
|
| 8 |
+
size_categories:
|
| 9 |
+
- 10K<n<100K
|
| 10 |
+
task_categories:
|
| 11 |
+
- token-classification
|
| 12 |
+
task_ids:
|
| 13 |
+
- named-entity-recognition
|
| 14 |
+
pretty_name: MIT Restaurant
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Dataset Card for "tner/mit_restaurant"
|
| 18 |
+
|
| 19 |
+
## Dataset Description
|
| 20 |
+
|
| 21 |
+
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
| 22 |
+
- **Paper:** [https://aclanthology.org/U15-1010.pdf](https://aclanthology.org/U15-1010.pdf)
|
| 23 |
+
- **Dataset:** MIT restaurant
|
| 24 |
+
- **Domain:** Restaurant
|
| 25 |
+
- **Number of Entity:** 8
|
| 26 |
+
|
| 27 |
+
### Dataset Summary
|
| 28 |
+
MIT Restaurant NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
|
| 29 |
+
|
| 30 |
+
- Entity Types: `Rating`, `Amenity`, `Location`, `Restaurant_Name`, `Price`, `Hours`, `Dish`, `Cuisine`.
|
| 31 |
+
|
| 32 |
+
## Dataset Structure
|
| 33 |
+
|
| 34 |
+
### Data Instances
|
| 35 |
+
An example of `train` looks as follows.
|
| 36 |
+
|
| 37 |
+
```
|
| 38 |
+
{
|
| 39 |
+
"tags": [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
| 40 |
+
"tokens": ["1", ".", "1", ".", "4", "Borrower", "engages", "in", "criminal", "conduct", "or", "is", "involved", "in", "criminal", "activities", ";"]
|
| 41 |
+
}
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
### Label ID
|
| 45 |
+
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/mit_restaurant/raw/main/dataset/label.json).
|
| 46 |
+
```python
|
| 47 |
+
{
|
| 48 |
+
"O": 0,
|
| 49 |
+
"B-Rating": 1,
|
| 50 |
+
"I-Rating": 2,
|
| 51 |
+
"B-Amenity": 3,
|
| 52 |
+
"I-Amenity": 4,
|
| 53 |
+
"B-Location": 5,
|
| 54 |
+
"I-Location": 6,
|
| 55 |
+
"B-Restaurant_Name": 7,
|
| 56 |
+
"I-Restaurant_Name": 8,
|
| 57 |
+
"B-Price": 9,
|
| 58 |
+
"B-Hours": 10,
|
| 59 |
+
"I-Hours": 11,
|
| 60 |
+
"B-Dish": 12,
|
| 61 |
+
"I-Dish": 13,
|
| 62 |
+
"B-Cuisine": 14,
|
| 63 |
+
"I-Price": 15,
|
| 64 |
+
"I-Cuisine": 16
|
| 65 |
+
}
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
### Data Splits
|
| 69 |
+
|
| 70 |
+
| name |train|validation|test|
|
| 71 |
+
|---------|----:|---------:|---:|
|
| 72 |
+
|mit_restaurant |6899 | 759| 1520|
|
dataset/label.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"O": 0, "B-Rating": 1, "I-Rating": 2, "B-Amenity": 3, "I-Amenity": 4, "B-Location": 5, "I-Location": 6, "B-Restaurant_Name": 7, "I-Restaurant_Name": 8, "B-Price": 9, "B-Hours": 10, "I-Hours": 11, "B-Dish": 12, "I-Dish": 13, "B-Cuisine": 14, "I-Price": 15, "I-Cuisine": 16}
|
dataset/test.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
dataset/train.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
dataset/valid.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
mit_restaurant.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
|
| 2 |
+
import json
|
| 3 |
+
from itertools import chain
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
logger = datasets.logging.get_logger(__name__)
|
| 7 |
+
_DESCRIPTION = """[mit_restaurant NER dataset](https://groups.csail.mit.edu/sls/downloads/)"""
|
| 8 |
+
_NAME = "mit_restaurant"
|
| 9 |
+
_VERSION = "1.0.0"
|
| 10 |
+
|
| 11 |
+
_HOME_PAGE = "https://github.com/asahi417/tner"
|
| 12 |
+
_URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset'
|
| 13 |
+
_URLS = {
|
| 14 |
+
str(datasets.Split.TEST): [f'{_URL}/test.json'],
|
| 15 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train.json'],
|
| 16 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/valid.json'],
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class MITRestaurantConfig(datasets.BuilderConfig):
|
| 21 |
+
"""BuilderConfig"""
|
| 22 |
+
|
| 23 |
+
def __init__(self, **kwargs):
|
| 24 |
+
"""BuilderConfig.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
**kwargs: keyword arguments forwarded to super.
|
| 28 |
+
"""
|
| 29 |
+
super(MITRestaurantConfig, self).__init__(**kwargs)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class MITRestaurant(datasets.GeneratorBasedBuilder):
|
| 33 |
+
"""Dataset."""
|
| 34 |
+
|
| 35 |
+
BUILDER_CONFIGS = [
|
| 36 |
+
MITRestaurantConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
def _split_generators(self, dl_manager):
|
| 40 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
| 41 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
| 42 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
| 43 |
+
|
| 44 |
+
def _generate_examples(self, filepaths):
|
| 45 |
+
_key = 0
|
| 46 |
+
for filepath in filepaths:
|
| 47 |
+
logger.info(f"generating examples from = {filepath}")
|
| 48 |
+
with open(filepath, encoding="utf-8") as f:
|
| 49 |
+
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
| 50 |
+
for i in _list:
|
| 51 |
+
data = json.loads(i)
|
| 52 |
+
yield _key, data
|
| 53 |
+
_key += 1
|
| 54 |
+
|
| 55 |
+
def _info(self):
|
| 56 |
+
return datasets.DatasetInfo(
|
| 57 |
+
description=_DESCRIPTION,
|
| 58 |
+
features=datasets.Features(
|
| 59 |
+
{
|
| 60 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 61 |
+
"tags": datasets.Sequence(datasets.Value("int32")),
|
| 62 |
+
}
|
| 63 |
+
),
|
| 64 |
+
supervised_keys=None,
|
| 65 |
+
homepage=_HOME_PAGE,
|
| 66 |
+
citation=_CITATION,
|
| 67 |
+
)
|