renma commited on
Commit
650e89a
·
verified ·
1 Parent(s): 9c1f1c8

Upload README_PRRC_dataset.md

Browse files
Files changed (1) hide show
  1. README_PRRC_dataset.md +98 -0
README_PRRC_dataset.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PRRC Rater Training and Evaluation Dataset
2
+
3
+ ## Dataset Description
4
+
5
+ This dataset contains the full training and evaluation data for the PRRC rater models described in [Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models](https://arxiv.org/abs/2504.14194). It is designed for training and benchmarking models that score text along four key quality dimensions: **Professionalism, Readability, Reasoning, and Cleanliness**.
6
+
7
+ - **Source**: Subset of SlimPajama-627B, annotated for PRRC dimensions
8
+ - **Purpose**: Supervised training and evaluation of PRRC raters (ModernBERT models)
9
+ - **Annotation**: Each sample is labeled by Llama-3.3-70B-Instruct and/or human annotators, then used to fine-tune and benchmark PRRC raters
10
+
11
+ ## Dataset Statistics
12
+
13
+ - **Total samples**: ~1M (split into train/dev/test)
14
+ - **Quality metrics**: 4 PRRC dimensions (Professionalism, Readability, Reasoning, Cleanliness)
15
+ - **Domains**: Diverse (CommonCrawl, C4, GitHub, Books, ArXiv, Wikipedia, StackExchange)
16
+ - **Annotation coverage**: 100% of included samples
17
+
18
+ ## PRRC Quality Dimensions
19
+
20
+ - **Professionalism**: Degree of expertise and prerequisite knowledge required
21
+ - **Readability**: Clarity, coherence, and ease of understanding
22
+ - **Reasoning**: Complexity of logical reasoning and analytical thinking
23
+ - **Cleanliness**: Formatting, completeness, and absence of noise/irrelevant content
24
+
25
+ Each dimension is rated on a 0–5 scale, with detailed prompt criteria provided in the [prompts/](./prompts/) directory of the GitHub repo.
26
+
27
+ ## Dataset Structure
28
+
29
+ Each example in the dataset has the following structure:
30
+
31
+ ```python
32
+ {
33
+ "id": "unique_document_id",
34
+ "content": "Main text content of the document",
35
+ "source": "domain_name", # e.g., "arxiv", "github", "wikipedia", etc.
36
+ "professionalism": int, # 0-5
37
+ "readability": int, # 0-5
38
+ "reasoning": int, # 0-5
39
+ "cleanliness": int # 0-5
40
+ }
41
+ ```
42
+
43
+ ## Usage
44
+
45
+ ### Loading the Dataset
46
+
47
+ ```python
48
+ from datasets import load_dataset
49
+
50
+ # Load the full PRRC rater dataset
51
+ dataset = load_dataset("opendatalab/Meta-rater-PRRC-Rater-dataset")
52
+
53
+ # Access splits
54
+ train = dataset["train"]
55
+ dev = dataset["validation"]
56
+ test = dataset["test"]
57
+ ```
58
+
59
+
60
+ ## Applications
61
+
62
+ - **Supervised training** of PRRC rater models (e.g., ModernBERT)
63
+ - **Benchmarking** and evaluation of text quality raters
64
+ - **Prompt engineering** and ablation studies for quality annotation
65
+ - **Data-centric LLM research**: Understanding the impact of different quality dimensions
66
+
67
+ ## Annotation Process
68
+
69
+ - **Initial annotation**: Llama-3.3-70B-Instruct (and/or human) rates each sample for all four PRRC dimensions using detailed prompts
70
+ - **Quality control**: Manual review and cleaning
71
+ - **Splitting**: Data is split into train/dev/test for robust evaluation
72
+
73
+ ## Citation
74
+
75
+ If you use this dataset, please cite:
76
+
77
+ ```bibtex
78
+ @article{zhuang2025meta,
79
+ title={Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models},
80
+ author={Zhuang, Xinlin and Peng, Jiahui and Ma, Ren and Wang, Yinfan and Bai, Tianyi and Wei, Xingjian and Qiu, Jiantao and Zhang, Chi and Qian, Ying and He, Conghui},
81
+ journal={arXiv preprint arXiv:2504.14194},
82
+ year={2025}
83
+ }
84
+ ```
85
+
86
+ ## License
87
+
88
+ This dataset is released under the same license as the original SlimPajama dataset. Please refer to the original SlimPajama repository for licensing details.
89
+
90
+ ## Contact
91
+
92
+ - **Project Lead**: Ren Ma (maren@pjlab.org.cn)
93
+ - **Corresponding Author**: Conghui He (heconghui@pjlab.org.cn)
94
+ - **Issues**: [GitHub Issues](https://github.com/opendatalab/Meta-rater/issues)
95
+
96
+ ---
97
+
98
+ **Made with ❤️ by the OpenDataLab team**