Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
a4e7039
·
verified ·
1 Parent(s): 4e5e72d

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md CHANGED
@@ -1,4 +1,17 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -21,4 +34,129 @@ configs:
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - kor
6
+ license: cc-by-sa-4.0
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - sentiment-analysis
12
+ - sentiment-scoring
13
+ - sentiment-classification
14
+ - hate-speech-detection
15
  dataset_info:
16
  features:
17
  - name: text
 
34
  path: data/train-*
35
  - split: test
36
  path: data/test-*
37
+ tags:
38
+ - mteb
39
+ - text
40
  ---
41
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
42
+
43
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
44
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">KorHateClassification</h1>
45
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
46
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
47
+ </div>
48
+
49
+ The dataset was created to provide the first human-labeled Korean corpus for
50
+ toxic speech detection from a Korean online entertainment news aggregator. Recently,
51
+ two young Korean celebrities suffered from a series of tragic incidents that led to two
52
+ major Korean web portals to close the comments section on their platform. However, this only
53
+ serves as a temporary solution, and the fundamental issue has not been solved yet. This dataset
54
+ hopes to improve Korean hate speech detection. Annotation was performed by 32 annotators,
55
+ consisting of 29 annotators from the crowdsourcing platform DeepNatural AI and three NLP researchers.
56
+
57
+
58
+ | | |
59
+ |---------------|---------------------------------------------|
60
+ | Task category | t2c |
61
+ | Domains | Social, Written |
62
+ | Reference | https://paperswithcode.com/dataset/korean-hatespeech-dataset |
63
+
64
+
65
+ ## How to evaluate on this task
66
+
67
+ You can evaluate an embedding model on this dataset using the following code:
68
+
69
+ ```python
70
+ import mteb
71
+
72
+ task = mteb.get_tasks(["KorHateClassification"])
73
+ evaluator = mteb.MTEB(task)
74
+
75
+ model = mteb.get_model(YOUR_MODEL)
76
+ evaluator.run(model)
77
+ ```
78
+
79
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
80
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
81
+
82
+ ## Citation
83
+
84
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
85
+
86
+ ```bibtex
87
+
88
+ @misc{moon2020beep,
89
+ archiveprefix = {arXiv},
90
+ author = {Jihyung Moon and Won Ik Cho and Junbum Lee},
91
+ eprint = {2005.12503},
92
+ primaryclass = {cs.CL},
93
+ title = {BEEP! Korean Corpus of Online News Comments for Toxic Speech Detection},
94
+ year = {2020},
95
+ }
96
+
97
+
98
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
99
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
100
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
101
+ publisher = {arXiv},
102
+ journal={arXiv preprint arXiv:2502.13595},
103
+ year={2025},
104
+ url={https://arxiv.org/abs/2502.13595},
105
+ doi = {10.48550/arXiv.2502.13595},
106
+ }
107
+
108
+ @article{muennighoff2022mteb,
109
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
110
+ title = {MTEB: Massive Text Embedding Benchmark},
111
+ publisher = {arXiv},
112
+ journal={arXiv preprint arXiv:2210.07316},
113
+ year = {2022}
114
+ url = {https://arxiv.org/abs/2210.07316},
115
+ doi = {10.48550/ARXIV.2210.07316},
116
+ }
117
+ ```
118
+
119
+ # Dataset Statistics
120
+ <details>
121
+ <summary> Dataset Statistics</summary>
122
+
123
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
124
+
125
+ ```python
126
+ import mteb
127
+
128
+ task = mteb.get_task("KorHateClassification")
129
+
130
+ desc_stats = task.metadata.descriptive_stats
131
+ ```
132
+
133
+ ```json
134
+ {
135
+ "train": {
136
+ "num_samples": 2048,
137
+ "number_of_characters": 79006,
138
+ "number_texts_intersect_with_train": null,
139
+ "min_text_length": 4,
140
+ "average_text_length": 38.5771484375,
141
+ "max_text_length": 130,
142
+ "unique_text": 2048,
143
+ "unique_labels": 3,
144
+ "labels": {
145
+ "1": {
146
+ "count": 648
147
+ },
148
+ "2": {
149
+ "count": 904
150
+ },
151
+ "0": {
152
+ "count": 496
153
+ }
154
+ }
155
+ }
156
+ }
157
+ ```
158
+
159
+ </details>
160
+
161
+ ---
162
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*