Upload Qwen_Qwen-Image-Edit_0.txt with huggingface_hub
Browse files
Qwen_Qwen-Image-Edit_0.txt
CHANGED
|
@@ -14,7 +14,7 @@ image = pipe(image=input_image, prompt=prompt).images[0]
|
|
| 14 |
|
| 15 |
ERROR:
|
| 16 |
Traceback (most recent call last):
|
| 17 |
-
File "/tmp/Qwen_Qwen-Image-
|
| 18 |
pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image-Edit", dtype=torch.bfloat16, device_map="cuda")
|
| 19 |
File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
| 20 |
return fn(*args, **kwargs)
|
|
@@ -52,4 +52,4 @@ Traceback (most recent call last):
|
|
| 52 |
File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/transformers/modeling_utils.py", line 770, in _load_state_dict_into_meta_model
|
| 53 |
_load_parameter_into_model(model, param_name, param.to(param_device))
|
| 54 |
~~~~~~~~^^^^^^^^^^^^^^
|
| 55 |
-
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which
|
|
|
|
| 14 |
|
| 15 |
ERROR:
|
| 16 |
Traceback (most recent call last):
|
| 17 |
+
File "/tmp/Qwen_Qwen-Image-Edit_0J4YnZM.py", line 28, in <module>
|
| 18 |
pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image-Edit", dtype=torch.bfloat16, device_map="cuda")
|
| 19 |
File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
| 20 |
return fn(*args, **kwargs)
|
|
|
|
| 52 |
File "/tmp/.cache/uv/environments-v2/965d8feb124e299f/lib/python3.13/site-packages/transformers/modeling_utils.py", line 770, in _load_state_dict_into_meta_model
|
| 53 |
_load_parameter_into_model(model, param_name, param.to(param_device))
|
| 54 |
~~~~~~~~^^^^^^^^^^^^^^
|
| 55 |
+
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which 183.12 MiB is free. Including non-PyTorch memory, this process has 21.85 GiB memory in use. Of the allocated memory 21.56 GiB is allocated by PyTorch, and 112.29 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|