code_execution_files / Qwen_Qwen-Image_0.txt
ariG23498's picture
ariG23498 HF Staff
Upload Qwen_Qwen-Image_0.txt with huggingface_hub
511621b verified
raw
history blame
2.99 kB
```CODE:
import torch
from diffusers import DiffusionPipeline
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", dtype=torch.bfloat16, device_map="cuda")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt).images[0]
```
ERROR:
Traceback (most recent call last):
File "/tmp/Qwen_Qwen-Image_0wu1agr.py", line 27, in <module>
pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", dtype=torch.bfloat16, device_map="cuda")
File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1025, in from_pretrained
loaded_sub_model = load_sub_model(
library_name=library_name,
...<21 lines>...
quantization_config=quantization_config,
)
File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 860, in load_sub_model
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1288, in from_pretrained
) = cls._load_pretrained_model(
~~~~~~~~~~~~~~~~~~~~~~~~~~^
model,
^^^^^^
...<13 lines>...
is_parallel_loading_enabled=is_parallel_loading_enabled,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1537, in _load_pretrained_model
_caching_allocator_warmup(model, expanded_device_map, dtype, hf_quantizer)
~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 754, in _caching_allocator_warmup
_ = torch.empty(warmup_elems, dtype=dtype, device=device, requires_grad=False)
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 38.05 GiB. GPU 0 has a total capacity of 22.03 GiB of which 21.34 GiB is free. Including non-PyTorch memory, this process has 700.00 MiB memory in use. Of the allocated memory 494.18 MiB is allocated by PyTorch, and 19.82 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)