## Dataset Description **Purpose**: Demonstrate how data quality impacts analytics through the iconic Titanic dataset, featuring: - **Original datasets** (with known age/class errors) - **Corrected versions** (with reconciled passenger details) - **Data quality annotations** (error flags, reconciliation sources) **Homepage**: [Data Governance: Titanic Dataset and the Perils of Bad Data](https://www.databooth.com.au/posts/data-quality-titanic/) **Repository**: `mjboothaus-titanic-databooth` **Tasks**: `data-cleaning`, `error-detection`, `survival-prediction` ## Dataset Versions | Version | Description | Key Features | |---------|-------------|--------------| | `original` | Unmodified datasets | Contains age discrepancies (e.g., Algernon Barkworth recorded as 80) | | `corrected-v1` | Age-reconciled data | Matches Encyclopedia Titanica records | | `annotated` | Error-flagged version | Contains `is_age_discrepancy` and `data_source` columns | ## Data Fields (Corrected Version) | Column | Type | Description | Common Errors | |--------|------|-------------|---------------| | `name` | string | Passenger name | - | | `age` | float | **Corrected age** at voyage | Original had 143+ age errors >2 years | | `pclass` | int | Passenger class (1-3) | Class misassignments in original | | `survived` | int | Survival status | - | | `is_age_discrepancy` | bool | True if original age error >2 years | - | | `data_source` | string | Reconciliation source (ET) | - | ## Usage Example ``` from datasets import load_dataset # Compare original vs corrected data original = load_dataset("mjboothaus/titanic-databooth", name="original") corrected = load_dataset("mjboothaus/titanic-databooth", name="corrected-v1") # Find corrected records discrepancies = corrected.filter(lambda x: x["is_age_discrepancy"]) print(f"Fixed {len(discrepancies)} age errors") ``` ## Key Data Quality Issues 1. **Age Discrepancies** - Original error: 80yo survivor (actual age 47) - 143+ passengers with >2 year age differences - Systemic bias from death age vs voyage age confusion 2. **Class Misassignments** - Documented cabin class errors - Impacts fare/survival correlation analysis ## Reconciliation Process 1. **Source Alignment**: Cross-referenced with: - Encyclopedia Titanica - Titanic Facts Network - Historical voyage manifests 2. **Validation Methods**: - Age distribution analysis - Survival rate by age cohort - Source conflict resolution protocols ## Impact Analysis | Metric | Original Data | Corrected Data | |--------|---------------|----------------| | Avg Age (Survivors) | 28.34 | 27.46 | | Oldest Survivor | 80 (incorrect) | 64 (Mary Compton) | | Class 1 Survival Rate | 62.96% | 63.01% (adjusted) | ## Suggested Use Cases - **Data Quality Workshops**: Compare original/corrected versions - **Governance Training**: Demonstrate error propagation - **ML Robustness Tests**: Train models on both versions ## Citation ``` @dataset{titanic-databooth, author = {Michael J. Booth}, title = {Titanic Data Quality Benchmark}, year = {2025}, publisher = {Hugging Face}, version = {1.0.0} } ``` ## Acknowledgements - **Encyclopedia Titanica** for reference data **Key Features to Highlight**: - **Version Control**: Clear lineage between original/corrected data - **Error Documentation**: Specific examples with historical context - **Impact Metrics**: Quantifiable differences between datasets - **Educational Focus**: Designed for data governance training **Code demonstrating**: 1. Age distribution comparisons 2. Survival rate analysis by data version 3. Simple ML model performance differences ## References: Original "datacard" see https://huggingface.co/datasets/mjboothaus/titanic-databooth/resolve/main/titanic3info.txt - [1] https://www.databooth.com.au/posts/data-quality-titanic/ - [2] https://mjboothaus.wordpress.com/2017/07/11/did-a-male-octogenarian-really-survive-the-sinking-of-the-rms-titanic-2/ --- license: apache-2.0 --- *Sponsored by: [DataBooth.com.au](https://www.databooth.com.au).*