File size: 12,077 Bytes
3879aae
 
4fcb6ed
877e393
 
 
 
 
 
 
 
3879aae
877e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
---
license: mit
viewer: false
task_categories:
- zero-shot-classification
- text-classification
tags:
- uv-script
- classification
- structured-outputs
- zero-shot
---
# Hugging Face Dataset Classification With Sieves

GPU-accelerated text classification for Hugging Face datasets with guaranteed valid outputs through structured 
generation with [Sieves](https://github.com/MantisAI/sieves/), [Outlines](https://github.com/dottxt-ai/outlines) and 
Hugging Face zero-shot pipelines.

This is a modified version of https://huggingface.co/datasets/uv-scripts/classification.

## πŸš€ Quick Start

```bash
# Classify IMDB reviews
uv run examples/classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/imdb-classified
```

That's it! No installation, no setup - just `uv run`.

## πŸ“‹ Requirements

- **GPU Recommended**: Uses GPU-accelerated inference (CPU fallback available but slow)
- Python 3.12+
- UV (will handle all dependencies automatically)

**Python Package Dependencies** (automatically installed via UV):
- `sieves` with engines support (>= 0.17.4)
- `typer` (>= 0.12)
- `datasets`
- `huggingface-hub`

## 🎯 Features

- **Guaranteed valid outputs** using structured generation with Outlines guided decoding
- **Zero-shot classification** without training data required
- **GPU-optimized** for maximum throughput and efficiency
- **Multi-label support** for documents with multiple applicable labels
- **Flexible model selection** - works with any instruction-tuned transformer model
- **Robust text handling** with preprocessing and validation
- **Automatic progress tracking** and detailed statistics
- **Direct Hub integration** - read and write datasets seamlessly
- **Label descriptions** support for providing context to improve accuracy
- **Optimized batching** with Sieves' automatic batch processing
- **Multiple guided backends** - supports `outlines` to handle any general language model on Hugging Face, and fast Hugging Face zero-shot classification pipelines 

## πŸ’» Usage

### Basic Classification

```bash
uv run examples/classify-dataset.py \
  --input-dataset <dataset-id> \
  --column <text-column> \
  --labels <comma-separated-labels> \
  --model <model-id> \
  --output-dataset <output-id>
```

### Arguments

**Required:**

- `--input-dataset`: Hugging Face dataset ID (e.g., `stanfordnlp/imdb`, `user/my-dataset`)
- `--column`: Name of the text column to classify
- `--labels`: Comma-separated classification labels (e.g., `"spam,ham"`)
- `--model`: Model to use (e.g., `HuggingFaceTB/SmolLM-360M-Instruct`)
- `--output-dataset`: Where to save the classified dataset

**Optional:**

- `--label-descriptions`: Provide descriptions for each label to improve classification accuracy
- `--multi-label`: Enable multi-label classification mode (creates multi-hot encoded labels)
- `--split`: Dataset split to process (default: `train`)
- `--max-samples`: Limit samples for testing
- `--shuffle`: Shuffle dataset before selecting samples (useful for random sampling)
- `--shuffle-seed`: Random seed for shuffling
- `--batch-size`: Batch size for inference (default: 64)
- `--max-tokens`: Maximum tokens to generate per sample (default: 200)
- `--hf-token`: Hugging Face token (or use `HF_TOKEN` env var)

### Label Descriptions

Provide context for your labels to improve classification accuracy:

```bash
uv run examples/classify-dataset.py \
  --input-dataset user/support-tickets \
  --column content \
  --labels "bug,feature,question,other" \
  --label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help,other:anything else" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/tickets-classified
```

The model uses these descriptions to better understand what each label represents, leading to more accurate classifications.

### Multi-Label Classification

Enable multi-label mode for documents that can have multiple applicable labels:

```bash
uv run examples/classify-dataset.py \
  --input-dataset ag_news \
  --column text \
  --labels "world,sports,business,science" \
  --multi-label \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/ag-news-multilabel
```

## πŸ“Š Examples

### Sentiment Analysis

```bash
uv run examples/classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,ambivalent,negative" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/imdb-sentiment
```

### Support Ticket Classification

```bash
uv run examples/classify-dataset.py \
  --input-dataset user/support-tickets \
  --column content \
  --labels "bug,feature_request,question,other" \
  --label-descriptions "bug:code or product not working as expected,feature_request:asking for new functionality,question:seeking help or clarification,other:general comments or feedback" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/tickets-classified
```

### News Categorization

```bash
uv run examples/classify-dataset.py \
  --input-dataset ag_news \
  --column text \
  --labels "world,sports,business,tech" \
  --model HuggingFaceTB/SmolLM-1.7B-Instruct \
  --output-dataset user/ag-news-categorized
```

### Multi-Label News Classification

```bash
uv run examples/classify-dataset.py \
  --input-dataset ag_news \
  --column text \
  --labels "world,sports,business,tech" \
  --multi-label \
  --label-descriptions "world:global and international events,sports:sports and athletics,business:business and finance,tech:technology and innovation" \
  --model HuggingFaceTB/SmolLM-1.7B-Instruct \
  --output-dataset user/ag-news-multilabel
```

This combines label descriptions with multi-label mode for comprehensive categorization of news articles.

### ArXiv ML Research Classification

Classify academic papers into machine learning research areas:

```bash
# Fast classification with random sampling
uv run examples/classify-dataset.py \
  --input-dataset librarian-bots/arxiv-metadata-snapshot \
  --column abstract \
  --labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \
  --label-descriptions "llm:language models and NLP,computer_vision:image and video processing,reinforcement_learning:RL and decision making,optimization:training and efficiency,theory:theoretical ML foundations,other:other ML topics" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/arxiv-ml-classified \
  --split "train" \
  --max-samples 100 \
  --shuffle

# Multi-label for nuanced classification
uv run examples/classify-dataset.py \
  --input-dataset librarian-bots/arxiv-metadata-snapshot \
  --column abstract \
  --labels "multimodal,agents,reasoning,safety,efficiency" \
  --label-descriptions "multimodal:vision-language and cross-modal models,agents:autonomous agents and tool use,reasoning:reasoning and planning systems,safety:alignment and safety research,efficiency:model optimization and deployment" \
  --multi-label \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/arxiv-frontier-research \
  --split "train[:1000]" \
  --max-samples 50
```

Multi-label mode is particularly valuable for academic abstracts where papers often span multiple topics and require careful analysis to determine all relevant research areas.

## πŸš€ Running Locally vs Cloud

This script is optimized to run locally on GPU-equipped machines:

```bash
# Local execution with your GPU
uv run examples/classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/imdb-classified
```

For cloud deployment, you can use Hugging Face Spaces or other GPU services by adapting the command to your environment.

## πŸ”§ Advanced Usage

### Random Sampling

When working with ordered datasets, use `--shuffle` with `--max-samples` to get a representative sample:

```bash
# Get 50 random reviews instead of the first 50
uv run examples/classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/imdb-sample \
  --max-samples 50 \
  --shuffle \
  --shuffle-seed 123  # For reproducibility
```


### Using Different Models

By default, this script works with any instruction-tuned model. Here are some recommended options:

```bash
# Lightweight model for fast classification
uv run examples/classify-dataset.py \
  --input-dataset user/my-dataset \
  --column text \
  --labels "A,B,C" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/classified

# Larger model for complex classification
uv run examples/classify-dataset.py \
  --input-dataset user/legal-docs \
  --column text \
  --labels "contract,patent,brief,memo,other" \
  --model HuggingFaceTB/SmolLM3-3B-Instruct \
  --output-dataset user/legal-classified

# Specialized zero-shot classifier
uv run examples/classify-dataset.py \
  --input-dataset user/my-dataset \
  --column text \
  --labels "A,B,C" \
  --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \
  --output-dataset user/classified
```

### Large Datasets

Configure `--batch-size` for more effective batch processing with large datasets: 

```bash
uv run examples/classify-dataset.py \
  --input-dataset user/huge-dataset \
  --column text \
  --labels "A,B,C" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/huge-classified \
  --batch-size 128
```


## 🀝 How It Works

1. **Sieves**: Provides a zero-shot task pipeline system for structured NLP workflows
2. **Outlines**: Provides guided decoding to guarantee valid label outputs
3. **UV**: Handles all dependencies automatically

The script loads your dataset, preprocesses texts, classifies each one with guaranteed valid outputs using Sieves' 
`Classification` task, then saves the results as a new column in the output dataset.

## πŸ› Troubleshooting

### GPU Not Available

This script works best with a GPU but can run on CPU (much slower). To use GPU:

- Run on a machine with NVIDIA GPU
- Use cloud GPU instances (AWS, GCP, Azure, etc.)
- Use Hugging Face Spaces with GPU

### Out of Memory

- Use a smaller model (e.g., SmolLM-360M instead of 3B)
- Reduce `--batch-size` (try 32, 16, or 8)
- Reduce `--max-tokens` for shorter generations

### Invalid/Skipped Texts

- Texts shorter than 3 characters are skipped
- Empty or None values are marked as invalid
- Very long texts are truncated to 4000 characters

### Classification Quality

- With Outlines guided decoding, outputs are guaranteed to be valid labels
- For better results, use clear and distinct label names
- Try `--label-descriptions` to provide context
- Use a larger model for nuanced tasks
- In multi-label mode, adjust the confidence threshold (defaults to 0.5)

### Authentication Issues

If you see authentication errors:

- Run `huggingface-cli login` to cache your token
- Or set `export HF_TOKEN=your_token_here`
- Verify your token has read/write permissions on the Hub

## πŸ”¬ Advanced Workflows

### Full Pipeline Workflow

Start with small tests, then run on the full dataset:

```bash
# Step 1: Test with small sample
uv run examples/classify-dataset.py \
  --input-dataset your-dataset \
  --column text \
  --labels "label1,label2,label3" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/test-classification \
  --max-samples 100

# Step 2: If results look good, run on full dataset
uv run examples/classify-dataset.py \
  --input-dataset your-dataset \
  --column text \
  --labels "label1,label2,label3" \
  --label-descriptions "label1:description,label2:description,label3:description" \
  --model HuggingFaceTB/SmolLM-360M-Instruct \
  --output-dataset user/final-classification \
  --batch-size 64
```

## πŸ“ License

This example is provided as part of the [Sieves](https://github.com/MantisAI/sieves/) project.