Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Norwegian
Size:
10K - 100K
ArXiv:
License:
Update README.md
Browse files
README.md
CHANGED
|
@@ -62,7 +62,7 @@ configs:
|
|
| 62 |
|
| 63 |
NorNE is a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokmål and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons,organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names.
|
| 64 |
|
| 65 |
-
There are 3 main configs in this dataset each with 3 versions of the NER tag set. When accessing the `bokmaal`, `nynorsk`, or `combined` configs the NER tag set will be comprised of 9 tags: `GPE_ORG`, `GPE_LOC`, `ORG`, `LOC`, `PER`, `PROD`, `EVT`, `DRV`, and `MISC`. The two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type.
|
| 66 |
|
| 67 |
### Supported Tasks and Leaderboards
|
| 68 |
|
|
@@ -78,16 +78,22 @@ Each entry contains text sentences, their language, identifiers, tokens, lemmas,
|
|
| 78 |
|
| 79 |
### Data Instances
|
| 80 |
|
| 81 |
-
|
| 82 |
|
| 83 |
```python
|
| 84 |
-
{
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
'
|
| 88 |
-
'
|
| 89 |
-
'
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
```
|
| 92 |
|
| 93 |
### Data Fields
|
|
@@ -95,78 +101,11 @@ An example of the `train` split of the `bokmaal` config.
|
|
| 95 |
|
| 96 |
Each entry is annotated with the next fields:
|
| 97 |
|
| 98 |
-
- `
|
| 99 |
-
- `
|
| 100 |
-
- `
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
- `ner_tags` (`List[int]`), list of numeric NER tags for each token in `tokens`
|
| 104 |
-
- `pos_tags` (`List[int]`), list of numeric PoS tags for each token in `tokens`
|
| 105 |
-
|
| 106 |
-
An example DataFrame obtained from the dataset:
|
| 107 |
-
|
| 108 |
-
<table class="dataframe" border="1">
|
| 109 |
-
<thead>
|
| 110 |
-
<tr style="text-align: right;">
|
| 111 |
-
<th></th>
|
| 112 |
-
<th>idx</th>
|
| 113 |
-
<th>lang</th>
|
| 114 |
-
<th>text</th>
|
| 115 |
-
<th>tokens</th>
|
| 116 |
-
<th>lemmas</th>
|
| 117 |
-
<th>ner_tags</th>
|
| 118 |
-
<th>pos_tags</th>
|
| 119 |
-
</tr>
|
| 120 |
-
</thead>
|
| 121 |
-
<tbody>
|
| 122 |
-
<tr>
|
| 123 |
-
<th>0</th>
|
| 124 |
-
<td>000001</td>
|
| 125 |
-
<td>bokmaal</td>
|
| 126 |
-
<td>Lam og piggvar på bryllupsmenyen</td>
|
| 127 |
-
<td>[Lam, og, piggvar, på, bryllupsmenyen]</td>
|
| 128 |
-
<td>[lam, og, piggvar, på, bryllupsmeny]</td>
|
| 129 |
-
<td>[0, 0, 0, 0, 0]</td>
|
| 130 |
-
<td>[0, 9, 0, 5, 0]</td>
|
| 131 |
-
</tr>
|
| 132 |
-
<tr>
|
| 133 |
-
<th>1</th>
|
| 134 |
-
<td>000002</td>
|
| 135 |
-
<td>bokmaal</td>
|
| 136 |
-
<td>Kamskjell, piggvar og lammefilet sto på menyen...</td>
|
| 137 |
-
<td>[Kamskjell, ,, piggvar, og, lammefilet, sto, p...</td>
|
| 138 |
-
<td>[kamskjell, $,, piggvar, og, lammefilet, stå, ...</td>
|
| 139 |
-
<td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]</td>
|
| 140 |
-
<td>[0, 1, 0, 9, 0, 15, 2, 0, 2, 8, 6, 0, 1]</td>
|
| 141 |
-
</tr>
|
| 142 |
-
<tr>
|
| 143 |
-
<th>2</th>
|
| 144 |
-
<td>000003</td>
|
| 145 |
-
<td>bokmaal</td>
|
| 146 |
-
<td>Og til dessert: Parfait à la Mette-Marit.</td>
|
| 147 |
-
<td>[Og, til, dessert, :, Parfait, à, la, Mette-Ma...</td>
|
| 148 |
-
<td>[og, til, dessert, $:, Parfait, à, la, Mette-M...</td>
|
| 149 |
-
<td>[0, 0, 0, 0, 7, 8, 8, 8, 0]</td>
|
| 150 |
-
<td>[9, 2, 0, 1, 10, 12, 12, 10, 1]</td>
|
| 151 |
-
</tr>
|
| 152 |
-
</tbody>
|
| 153 |
-
</table>
|
| 154 |
-
|
| 155 |
-
### Data Splits
|
| 156 |
-
|
| 157 |
-
There are three splits: `train`, `validation` and `test`.
|
| 158 |
-
|
| 159 |
-
| Config | Split | Total |
|
| 160 |
-
| :---------|-------------:|-------:|
|
| 161 |
-
| `bokmaal` | `train` | 15696 |
|
| 162 |
-
| `bokmaal` | `validation` | 2410 |
|
| 163 |
-
| `bokmaal` | `test` | 1939 |
|
| 164 |
-
| `nynorsk` | `train` | 14174 |
|
| 165 |
-
| `nynorsk` | `validation` | 1890 |
|
| 166 |
-
| `nynorsk` | `test` | 1511 |
|
| 167 |
-
| `combined`| `test` | 29870 |
|
| 168 |
-
| `combined`| `validation` | 4300 |
|
| 169 |
-
| `combined`| `test` | 3450 |
|
| 170 |
|
| 171 |
## Dataset Creation
|
| 172 |
|
|
|
|
| 62 |
|
| 63 |
NorNE is a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokmål and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons,organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names.
|
| 64 |
|
| 65 |
+
There are 3 main configs in this dataset each with 3 versions of the NER tag set. When accessing the `bokmaal`, `nynorsk`, or `combined` configs the NER tag set will be comprised of 9 tags: `GPE_ORG`, `GPE_LOC`, `ORG`, `LOC`, `PER`, `PROD`, `EVT`, `DRV`, and `MISC`. The two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type. By default, the full set (9 tags) will be used. See Annotations for further details.
|
| 66 |
|
| 67 |
### Supported Tasks and Leaderboards
|
| 68 |
|
|
|
|
| 78 |
|
| 79 |
### Data Instances
|
| 80 |
|
| 81 |
+
Each example looks as follows:
|
| 82 |
|
| 83 |
```python
|
| 84 |
+
{
|
| 85 |
+
'id': '004439',
|
| 86 |
+
'tokens': [
|
| 87 |
+
'Hos', 'Mendelsohn', 'kan', 'man', 'finne', 'samme', 'fascinasjon',
|
| 88 |
+
'for', 'språkets', 'sensuelle', 'skjønnhet', 'og', 'glitrende',
|
| 89 |
+
'musikalitet', 'som', 'hos', 'Proust', '.'
|
| 90 |
+
],
|
| 91 |
+
'tags': [
|
| 92 |
+
'O', 'B-PER', 'O', 'O', 'O', 'O', 'O',
|
| 93 |
+
'O', 'O', 'O', 'O', 'O', 'O',
|
| 94 |
+
'O', 'O', 'O', 'B-PER', 'O'
|
| 95 |
+
]
|
| 96 |
+
}
|
| 97 |
```
|
| 98 |
|
| 99 |
### Data Fields
|
|
|
|
| 101 |
|
| 102 |
Each entry is annotated with the next fields:
|
| 103 |
|
| 104 |
+
- `id` (`str`): an example id
|
| 105 |
+
- `tokens` (`List[str]`), list of tokens
|
| 106 |
+
- `tags` (`List[int]`): list of NER tags for each token in `tokens`
|
| 107 |
+
|
| 108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
## Dataset Creation
|
| 111 |
|