Datasets:
ltg
/

Modalities:
Text
Formats:
parquet
Languages:
Norwegian
ArXiv:
Libraries:
Datasets
pandas
License:
vmkhlv commited on
Commit
9bccd01
·
verified ·
1 Parent(s): 0344a33

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -81
README.md CHANGED
@@ -62,7 +62,7 @@ configs:
62
 
63
  NorNE is a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokmål and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons,organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names.
64
 
65
- There are 3 main configs in this dataset each with 3 versions of the NER tag set. When accessing the `bokmaal`, `nynorsk`, or `combined` configs the NER tag set will be comprised of 9 tags: `GPE_ORG`, `GPE_LOC`, `ORG`, `LOC`, `PER`, `PROD`, `EVT`, `DRV`, and `MISC`. The two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type. To access these reduced versions of the dataset, you can use the configs `bokmaal-7`, `nynorsk-7`, `combined-7` for the NER tag set with 7 tags ( **`ORG`**, **`LOC`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`), and `bokmaal-8`, `nynorsk-8`, `combined-8` for the NER tag set with 8 tags (`LOC_` and `ORG_`: **`ORG`**, **`LOC`**, **`GPE`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`). By default, the full set (9 tags) will be used. See Annotations for further details.
66
 
67
  ### Supported Tasks and Leaderboards
68
 
@@ -78,16 +78,22 @@ Each entry contains text sentences, their language, identifiers, tokens, lemmas,
78
 
79
  ### Data Instances
80
 
81
- An example of the `train` split of the `bokmaal` config.
82
 
83
  ```python
84
- {'idx': '000001',
85
- 'lang': 'bokmaal',
86
- 'lemmas': ['lam', 'og', 'piggvar', 'på', 'bryllupsmeny'],
87
- 'ner_tags': [0, 0, 0, 0, 0],
88
- 'pos_tags': [0, 9, 0, 5, 0],
89
- 'text': 'Lam og piggvar på bryllupsmenyen',
90
- 'tokens': ['Lam', 'og', 'piggvar', 'på', 'bryllupsmenyen']}
 
 
 
 
 
 
91
  ```
92
 
93
  ### Data Fields
@@ -95,78 +101,11 @@ An example of the `train` split of the `bokmaal` config.
95
 
96
  Each entry is annotated with the next fields:
97
 
98
- - `idx` (`int`), text (sentence) identifier from the NorNE dataset
99
- - `lang` (`str`), language variety, either `bokmaal`, `nynorsk` or `combined`
100
- - `text` (`str`), plain text
101
- - `tokens` (`List[str]`), list of tokens extracted from `text`
102
- - `lemmas` (`List[str]`), list of lemmas extracted from `tokens`
103
- - `ner_tags` (`List[int]`), list of numeric NER tags for each token in `tokens`
104
- - `pos_tags` (`List[int]`), list of numeric PoS tags for each token in `tokens`
105
-
106
- An example DataFrame obtained from the dataset:
107
-
108
- <table class="dataframe" border="1">
109
- <thead>
110
- <tr style="text-align: right;">
111
- <th></th>
112
- <th>idx</th>
113
- <th>lang</th>
114
- <th>text</th>
115
- <th>tokens</th>
116
- <th>lemmas</th>
117
- <th>ner_tags</th>
118
- <th>pos_tags</th>
119
- </tr>
120
- </thead>
121
- <tbody>
122
- <tr>
123
- <th>0</th>
124
- <td>000001</td>
125
- <td>bokmaal</td>
126
- <td>Lam og piggvar på bryllupsmenyen</td>
127
- <td>[Lam, og, piggvar, på, bryllupsmenyen]</td>
128
- <td>[lam, og, piggvar, på, bryllupsmeny]</td>
129
- <td>[0, 0, 0, 0, 0]</td>
130
- <td>[0, 9, 0, 5, 0]</td>
131
- </tr>
132
- <tr>
133
- <th>1</th>
134
- <td>000002</td>
135
- <td>bokmaal</td>
136
- <td>Kamskjell, piggvar og lammefilet sto på menyen...</td>
137
- <td>[Kamskjell, ,, piggvar, og, lammefilet, sto, p...</td>
138
- <td>[kamskjell, $,, piggvar, og, lammefilet, stå, ...</td>
139
- <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]</td>
140
- <td>[0, 1, 0, 9, 0, 15, 2, 0, 2, 8, 6, 0, 1]</td>
141
- </tr>
142
- <tr>
143
- <th>2</th>
144
- <td>000003</td>
145
- <td>bokmaal</td>
146
- <td>Og til dessert: Parfait à la Mette-Marit.</td>
147
- <td>[Og, til, dessert, :, Parfait, à, la, Mette-Ma...</td>
148
- <td>[og, til, dessert, $:, Parfait, à, la, Mette-M...</td>
149
- <td>[0, 0, 0, 0, 7, 8, 8, 8, 0]</td>
150
- <td>[9, 2, 0, 1, 10, 12, 12, 10, 1]</td>
151
- </tr>
152
- </tbody>
153
- </table>
154
-
155
- ### Data Splits
156
-
157
- There are three splits: `train`, `validation` and `test`.
158
-
159
- | Config | Split | Total |
160
- | :---------|-------------:|-------:|
161
- | `bokmaal` | `train` | 15696 |
162
- | `bokmaal` | `validation` | 2410 |
163
- | `bokmaal` | `test` | 1939 |
164
- | `nynorsk` | `train` | 14174 |
165
- | `nynorsk` | `validation` | 1890 |
166
- | `nynorsk` | `test` | 1511 |
167
- | `combined`| `test` | 29870 |
168
- | `combined`| `validation` | 4300 |
169
- | `combined`| `test` | 3450 |
170
 
171
  ## Dataset Creation
172
 
 
62
 
63
  NorNE is a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokmål and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons,organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names.
64
 
65
+ There are 3 main configs in this dataset each with 3 versions of the NER tag set. When accessing the `bokmaal`, `nynorsk`, or `combined` configs the NER tag set will be comprised of 9 tags: `GPE_ORG`, `GPE_LOC`, `ORG`, `LOC`, `PER`, `PROD`, `EVT`, `DRV`, and `MISC`. The two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type. By default, the full set (9 tags) will be used. See Annotations for further details.
66
 
67
  ### Supported Tasks and Leaderboards
68
 
 
78
 
79
  ### Data Instances
80
 
81
+ Each example looks as follows:
82
 
83
  ```python
84
+ {
85
+ 'id': '004439',
86
+ 'tokens': [
87
+ 'Hos', 'Mendelsohn', 'kan', 'man', 'finne', 'samme', 'fascinasjon',
88
+ 'for', 'språkets', 'sensuelle', 'skjønnhet', 'og', 'glitrende',
89
+ 'musikalitet', 'som', 'hos', 'Proust', '.'
90
+ ],
91
+ 'tags': [
92
+ 'O', 'B-PER', 'O', 'O', 'O', 'O', 'O',
93
+ 'O', 'O', 'O', 'O', 'O', 'O',
94
+ 'O', 'O', 'O', 'B-PER', 'O'
95
+ ]
96
+ }
97
  ```
98
 
99
  ### Data Fields
 
101
 
102
  Each entry is annotated with the next fields:
103
 
104
+ - `id` (`str`): an example id
105
+ - `tokens` (`List[str]`), list of tokens
106
+ - `tags` (`List[int]`): list of NER tags for each token in `tokens`
107
+
108
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  ## Dataset Creation
111