import random from collections import defaultdict from pathlib import Path from typing import Dict, List import fire import numpy as np from PIL import Image from sahi.utils.coco import Coco, CocoAnnotation, CocoCategory, CocoImage from sahi.utils.file import load_json, save_json from tqdm import tqdm # fix the seed random.seed(13) def xview_to_coco( train_images_dir, train_geojson_path, output_dir, train_split_rate=0.75, category_id_remapping=None, ): """ Converts visdrone-det annotations into coco annotation. Args: train_images_dir: str 'train_images' folder directory train_geojson_path: str 'xView_train.geojson' file path output_dir: str Output folder directory train_split_rate: bool Train split ratio category_id_remapping: dict Used for selecting desired category ids and mapping them. If not provided, xView mapping will be used. format: str(id) to str(id) """ # init vars category_id_to_name = {} with open("src/xview/xview_class_labels.txt", encoding="utf8") as f: lines = f.readlines() for line in lines: category_id = line.split(":")[0] category_name = line.split(":")[1].replace("\n", "") category_id_to_name[category_id] = category_name if category_id_remapping is None: category_id_remapping = load_json("src/xview/category_id_mapping.json") category_id_remapping # init coco object coco = Coco() # append categories for category_id, category_name in category_id_to_name.items(): if category_id in category_id_remapping.keys(): remapped_category_id = category_id_remapping[category_id] coco.add_category( CocoCategory(id=int(remapped_category_id), name=category_name) ) # parse xview data coords, chips, classes, image_name_to_annotation_ind = get_labels( train_geojson_path ) image_name_list = get_ordered_image_name_list(image_name_to_annotation_ind) # convert xView data to COCO format for image_name in tqdm(image_name_list, "Converting xView data into COCO format"): # create coco image object width, height = Image.open(Path(train_images_dir) / image_name).size coco_image = CocoImage(file_name=image_name, height=height, width=width) annotation_ind_list = image_name_to_annotation_ind[image_name] # iterate over image annotations for annotation_ind in annotation_ind_list: bbox = coords[annotation_ind].tolist() category_id = str(int(classes[annotation_ind].item())) coco_bbox = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]] if category_id in category_id_remapping.keys(): category_name = category_id_to_name[category_id] remapped_category_id = category_id_remapping[category_id] else: continue # create coco annotation and append it to coco image coco_annotation = CocoAnnotation( bbox=coco_bbox, category_id=int(remapped_category_id), category_name=category_name, ) if coco_annotation.area > 0: coco_image.add_annotation(coco_annotation) coco.add_image(coco_image) result = coco.split_coco_as_train_val(train_split_rate=train_split_rate) train_json_path = Path(output_dir) / "train.json" val_json_path = Path(output_dir) / "val.json" save_json(data=result["train_coco"].json, save_path=train_json_path) save_json(data=result["val_coco"].json, save_path=val_json_path) def get_ordered_image_name_list(image_name_to_annotation_ind: Dict): image_name_list: List[str] = list(image_name_to_annotation_ind.keys()) def get_image_ind(image_name: str): return int(image_name.split(".")[0]) image_name_list.sort(key=get_image_ind) return image_name_list def get_labels(fname): """ Gets label data from a geojson label file Args: fname: file path to an xView geojson label file Output: Returns three arrays: coords, chips, and classes corresponding to the coordinates, file-names, and classes for each ground truth. Modified from https://github.com/DIUx-xView. """ data = load_json(fname) coords = np.zeros((len(data["features"]), 4)) chips = np.zeros((len(data["features"])), dtype="object") classes = np.zeros((len(data["features"]))) image_name_to_annotation_ind = defaultdict(list) for i in tqdm(range(len(data["features"])), "Parsing xView data"): if data["features"][i]["properties"]["bounds_imcoords"] != []: b_id = data["features"][i]["properties"]["image_id"] # https://github.com/DIUx-xView/xView1_baseline/issues/3 if b_id == "1395.tif": continue val = np.array( [ int(num) for num in data["features"][i]["properties"][ "bounds_imcoords" ].split(",") ] ) chips[i] = b_id classes[i] = data["features"][i]["properties"]["type_id"] image_name_to_annotation_ind[b_id].append(i) if val.shape[0] != 4: print("Issues at %d!" % i) else: coords[i] = val else: chips[i] = "None" return coords, chips, classes, image_name_to_annotation_ind if __name__ == "__main__": fire.Fire(xview_to_coco)