--- license: cc-by-4.0 task_categories: - feature-extraction tags: - code - remote_sensing - weakly_supervised_semantic_segmentation size_categories: - 100K Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., Arino, O., 2021. ESA WorldCover 10 m 2020 v100. https://doi.org/10.5281/zenodo.5571936 Homepage: https://esa-worldcover.org/en ### Dataset structure ~500,000 (image, label, class_proportions) triplets where - image -> Remote Sensing composite with Bands B4, B3, B2, B8, B11, B12, S1VV, S1VH at 10m resolution of size 128x128px - label -> WorldCover 2020 V100 Semantic Segmentation Map with 11 classes - class proportions -> the amount of pixel for each class in percent (sums up to one) split into 3 subsets for training, validation and testing - train_split: 70% () - val_split: 10% () - test_split: 20% () additional subtable in LMDB with means and standard deviations for each split ### using this dataset: 1. Reqiurements - pytorch - lmdb - numpy - safetensors 2. Extract the LMDB file - ```tar -xz S2WC-RSS-like.tar.gz . ``` 4. Initialze the dataset reader ```python import ./WCv1LMDBReader.py # initialize train dataset by setting split='train' and use all available bands train_ds = WCv1LMDBReader('', split='train', output_bands=[Bands.ALL]) # initialize val dataset by setting split='val' and use all available bands val_ds = WCv1LMDBReader('', split='val', output_bands=[Bands.ALL]) # initialize train dataset by setting split='test' and use all available bands test_ds = WCv1LMDBReader('', split='test', output_bands=[Bands.ALL]) # load the means and std deviations train_mean, train_std = train_ds.get_mean_std() val_mean, val_std = val_ds.get_mean_std() test_mean, test_std = test_ds.get_mean_std() ``` create a pytorch dataset that can be used with a dataloader in either pytorch lightning or plain pytorch e.g. ```python from torch.utils.data import Dataloader train_loader = utils.data.DataLoader(train_ds, batch_size=64, num_workers=4, shuffle=True) val_loader = utils.data.DataLoader(val_ds, batch_size=64, num_workers=4) test_loader = utils.data.DataLoader(test_ds, batch_size=64, num_workers=4) ```