Datasets:
Put count_classes funtction into the WCv1LMDBReader class to get it standalone
Browse files- WCv1LMDBReader.py +47 -2
WCv1LMDBReader.py
CHANGED
|
@@ -8,7 +8,6 @@ import numpy as np
|
|
| 8 |
from enum import Enum
|
| 9 |
import safetensors.torch
|
| 10 |
from torch.utils.data import Dataset
|
| 11 |
-
from flumapping.utils.Utils import one_hot_encode, count_classes
|
| 12 |
|
| 13 |
"""
|
| 14 |
tensors = {
|
|
@@ -179,6 +178,52 @@ class WCv1LMDBReader(Dataset):
|
|
| 179 |
self.keys()
|
| 180 |
return status
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
def __len__(self):
|
| 183 |
if self._keys is None:
|
| 184 |
self.logger.info("keys are not loaded yet")
|
|
@@ -254,5 +299,5 @@ class WCv1LMDBReader(Dataset):
|
|
| 254 |
if "classprops" in tensor_dict.keys():
|
| 255 |
class_props = tensor_dict['classprops']
|
| 256 |
else:
|
| 257 |
-
class_props = count_classes(tensor_dict['wcmap'])
|
| 258 |
return (image, label, class_props)
|
|
|
|
| 8 |
from enum import Enum
|
| 9 |
import safetensors.torch
|
| 10 |
from torch.utils.data import Dataset
|
|
|
|
| 11 |
|
| 12 |
"""
|
| 13 |
tensors = {
|
|
|
|
| 178 |
self.keys()
|
| 179 |
return status
|
| 180 |
|
| 181 |
+
def count_classes(self, map: np.ndarray | torch.Tensor,output_type=None) -> np.ndarray | torch.Tensor:
|
| 182 |
+
"""function to count the class proportions of an segmentation map.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
map (np.ndarray | torch.Tensor): input map on which the class proportions needs to be counted. Input can be a single map (np.ndarray) or batched tensor of multiple maps (torch.Tensor)
|
| 186 |
+
|
| 187 |
+
Returns:
|
| 188 |
+
np.ndarray | torch.Tensor: the class proportions of the input map.
|
| 189 |
+
"""
|
| 190 |
+
if len(map.shape) == 3:
|
| 191 |
+
map = map.squeeze()
|
| 192 |
+
|
| 193 |
+
if type(map) == np.ndarray:
|
| 194 |
+
map = torch.tensor(map, dtype=torch.float32)
|
| 195 |
+
|
| 196 |
+
output = []
|
| 197 |
+
num_pixel = map.shape[0] * map.shape[1]
|
| 198 |
+
|
| 199 |
+
for i in range(10, 110, 10):
|
| 200 |
+
if len(map.shape) == 4:
|
| 201 |
+
percentage = torch.sum(torch.where(map == i, 1, 0), dim=(1,2,3)) / num_pixel
|
| 202 |
+
else:
|
| 203 |
+
percentage = torch.sum(torch.where(map == i, 1, 0)) / num_pixel
|
| 204 |
+
output.append(percentage)
|
| 205 |
+
|
| 206 |
+
if i == 90:
|
| 207 |
+
if len(map.shape) == 4:
|
| 208 |
+
percentage = torch.sum(torch.where(map == i, 1, 0), dim=(1,2,3)) / num_pixel
|
| 209 |
+
else:
|
| 210 |
+
percentage = torch.sum(torch.where(map == i, 1, 0)) / num_pixel
|
| 211 |
+
output.append(percentage)
|
| 212 |
+
|
| 213 |
+
if len(map.shape) == 4:
|
| 214 |
+
class_props = torch.stack(output, dim=1)
|
| 215 |
+
class_props.requires_grad = True
|
| 216 |
+
else:
|
| 217 |
+
class_props = torch.tensor(output)
|
| 218 |
+
|
| 219 |
+
if type(map) == np.ndarray:
|
| 220 |
+
return class_props.cpu().detach().numpy()
|
| 221 |
+
if type(map) == torch.Tensor:
|
| 222 |
+
if output_type is not None:
|
| 223 |
+
return class_props.type(dtype=output_type)
|
| 224 |
+
else:
|
| 225 |
+
return class_props
|
| 226 |
+
|
| 227 |
def __len__(self):
|
| 228 |
if self._keys is None:
|
| 229 |
self.logger.info("keys are not loaded yet")
|
|
|
|
| 299 |
if "classprops" in tensor_dict.keys():
|
| 300 |
class_props = tensor_dict['classprops']
|
| 301 |
else:
|
| 302 |
+
class_props = self.count_classes(tensor_dict['wcmap'])
|
| 303 |
return (image, label, class_props)
|