Datasets:
Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception: SplitsNotFoundError
Message: The split names could not be parsed from the dataset config.
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
for split_generator in builder._split_generators(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 60, in _split_generators
self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1838, in from_arrow_schema
metadata_features = Features.from_dict(metadata["info"]["features"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
obj = generate_from_dict(dic)
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
return {key: generate_from_dict(value) for key, value in obj.items()}
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1469, in generate_from_dict
raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")
ValueError: Feature type 'Nifti' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
for split in get_dataset_split_names(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
info = get_dataset_config_info(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
ISLES'24 Stroke Training Dataset
Multi-center longitudinal multimodal acute ischemic stroke training dataset from the ISLES'24 Challenge.
Overview
149 acute ischemic stroke training cases with:
- Admission imaging (ses-01): Non-contrast CT, CT angiography, 4D CT perfusion
- Follow-up imaging (ses-02): Post-treatment MRI (DWI, ADC)
- Clinical data: Demographics, patient history, admission NIHSS, 3-month mRS outcomes
- Annotations: Infarct masks, large vessel occlusion masks, Circle of Willis anatomy
Note: The ISLES'24 paper describes a training set of 150 cases; the Zenodo v7 training archive contains 149 publicly released subjects.
Dataset Structure
Imaging Modalities
| Session | Modality | Description |
|---|---|---|
| ses-01 (Acute) | ncct |
Non-contrast CT |
| ses-01 (Acute) | cta |
CT Angiography |
| ses-01 (Acute) | ctp |
4D CT Perfusion time series |
| ses-01 (Acute) | tmax |
Time-to-maximum perfusion map |
| ses-01 (Acute) | mtt |
Mean transit time map |
| ses-01 (Acute) | cbf |
Cerebral blood flow map |
| ses-01 (Acute) | cbv |
Cerebral blood volume map |
| ses-02 (Follow-up) | dwi |
Diffusion-weighted MRI |
| ses-02 (Follow-up) | adc |
Apparent diffusion coefficient |
Derivative Masks
| Mask | Description |
|---|---|
lesion_mask |
Binary infarct segmentation (from follow-up MRI) |
lvo_mask |
Large vessel occlusion mask (from CTA) |
cow_mask |
Circle of Willis anatomy (multi-label, auto-generated from CTA) |
Clinical Variables
Clinical variables are extracted from per-subject XLSX files in the phenotype/ directory:
| Variable | Source File | Description |
|---|---|---|
age |
demographic_baseline.xlsx | Patient age at admission |
sex |
demographic_baseline.xlsx | Patient sex (M/F) |
nihss_admission |
demographic_baseline.xlsx | NIH Stroke Scale score at admission |
mrs_admission |
demographic_baseline.xlsx | Modified Rankin Scale at admission |
mrs_3month |
outcome.xlsx | Modified Rankin Scale at 3 months (primary outcome) |
Usage
from datasets import load_dataset
ds = load_dataset("hugging-science/isles24-stroke", split="train")
# Access a subject
example = ds[0]
print(example["subject_id"]) # "sub-stroke0001"
print(example["ncct"]) # Non-contrast CT array
print(example["dwi"]) # Diffusion-weighted MRI
print(example["lesion_mask"]) # Ground truth segmentation
print(example["nihss_admission"]) # NIH Stroke Scale at admission
print(example["mrs_3month"]) # Modified Rankin Scale at 3 months
Data Organization
The source data follows BIDS structure. This tree shows the actual Zenodo v7 layout:
train/
βββ clinical_data-description.xlsx
βββ raw_data/
β βββ sub-stroke0001/
β βββ ses-01/
β βββ sub-stroke0001_ses-01_ncct.nii.gz
β βββ sub-stroke0001_ses-01_cta.nii.gz
β βββ sub-stroke0001_ses-01_ctp.nii.gz
β βββ perfusion-maps/
β βββ sub-stroke0001_ses-01_tmax.nii.gz
β βββ sub-stroke0001_ses-01_mtt.nii.gz
β βββ sub-stroke0001_ses-01_cbf.nii.gz
β βββ sub-stroke0001_ses-01_cbv.nii.gz
βββ derivatives/
β βββ sub-stroke0001/
β βββ ses-01/
β β βββ perfusion-maps/
β β β βββ sub-stroke0001_ses-01_space-ncct_tmax.nii.gz
β β β βββ sub-stroke0001_ses-01_space-ncct_mtt.nii.gz
β β β βββ sub-stroke0001_ses-01_space-ncct_cbf.nii.gz
β β β βββ sub-stroke0001_ses-01_space-ncct_cbv.nii.gz
β β βββ sub-stroke0001_ses-01_space-ncct_cta.nii.gz
β β βββ sub-stroke0001_ses-01_space-ncct_ctp.nii.gz
β β βββ sub-stroke0001_ses-01_space-ncct_lvo-msk.nii.gz
β β βββ sub-stroke0001_ses-01_space-ncct_cow-msk.nii.gz
β βββ ses-02/
β βββ sub-stroke0001_ses-02_space-ncct_dwi.nii.gz
β βββ sub-stroke0001_ses-02_space-ncct_adc.nii.gz
β βββ sub-stroke0001_ses-02_space-ncct_lesion-msk.nii.gz
βββ phenotype/
βββ sub-stroke0001/
βββ ses-01/
βββ ses-02/
Citation
When using this dataset, please cite:
@article{riedel2024isles,
title={ISLES'24 -- A Real-World Longitudinal Multimodal Stroke Dataset},
author={Riedel, Evamaria Olga and de la Rosa, Ezequiel and Baran, The Anh and
Hernandez Petzsche, Moritz and Baazaoui, Hakim and Yang, Kaiyuan and
Musio, Fabio Antonio and Huang, Houjing and Robben, David and
Seia, Joaquin Oscar and Wiest, Roland and Reyes, Mauricio and
Su, Ruisheng and Zimmer, Claus and Boeckh-Behrens, Tobias and
Berndt, Maria and Menze, Bjoern and Rueckert, Daniel and
Wiestler, Benedikt and Wegener, Susanne and Kirschke, Jan Stefan},
journal={arXiv preprint arXiv:2408.11142},
year={2024}
}
@article{delarosa2024isles,
title={ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?},
author={de la Rosa, Ezequiel and Su, Ruisheng and Reyes, Mauricio and
Wiest, Roland and Riedel, Evamaria Olga and Kofler, Florian and
others and Menze, Bjoern},
journal={arXiv preprint arXiv:2408.10966},
year={2024}
}
If using Circle of Willis masks, also cite:
@article{yang2023benchmarking,
title={Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical
Segmentation of the Circle of Willis for CTA and MRA},
author={Yang, Kaiyuan and Musio, Fabio and Ma, Yue and Juchler, Norman and
Paetzold, Johannes C and Al-Maskari, Rami and others and Menze, Bjoern},
journal={arXiv preprint arXiv:2312.17670},
year={2023}
}
Related Resources
- Downloads last month
- 41
Source:
(v7, November 2025)
Challenge:
ISLES 2024
Paper:
Riedel et al., arXiv:2408.11142
License:
CC BY-NC-SA 4.0
Size:
99 GB (compressed)