Datasets:

Size:
n<1K
ArXiv:
License:
Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 60, in _split_generators
                  self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1838, in from_arrow_schema
                  metadata_features = Features.from_dict(metadata["info"]["features"])
                                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
                  obj = generate_from_dict(dic)
                        ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
                  return {key: generate_from_dict(value) for key, value in obj.items()}
                               ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1469, in generate_from_dict
                  raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")
              ValueError: Feature type 'Nifti' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

ISLES'24 Stroke Training Dataset

Multi-center longitudinal multimodal acute ischemic stroke training dataset from the ISLES'24 Challenge.

Overview

149 acute ischemic stroke training cases with:

  • Admission imaging (ses-01): Non-contrast CT, CT angiography, 4D CT perfusion
  • Follow-up imaging (ses-02): Post-treatment MRI (DWI, ADC)
  • Clinical data: Demographics, patient history, admission NIHSS, 3-month mRS outcomes
  • Annotations: Infarct masks, large vessel occlusion masks, Circle of Willis anatomy

Note: The ISLES'24 paper describes a training set of 150 cases; the Zenodo v7 training archive contains 149 publicly released subjects.

Dataset Structure

Imaging Modalities

Session Modality Description
ses-01 (Acute) ncct Non-contrast CT
ses-01 (Acute) cta CT Angiography
ses-01 (Acute) ctp 4D CT Perfusion time series
ses-01 (Acute) tmax Time-to-maximum perfusion map
ses-01 (Acute) mtt Mean transit time map
ses-01 (Acute) cbf Cerebral blood flow map
ses-01 (Acute) cbv Cerebral blood volume map
ses-02 (Follow-up) dwi Diffusion-weighted MRI
ses-02 (Follow-up) adc Apparent diffusion coefficient

Derivative Masks

Mask Description
lesion_mask Binary infarct segmentation (from follow-up MRI)
lvo_mask Large vessel occlusion mask (from CTA)
cow_mask Circle of Willis anatomy (multi-label, auto-generated from CTA)

Clinical Variables

Clinical variables are extracted from per-subject XLSX files in the phenotype/ directory:

Variable Source File Description
age demographic_baseline.xlsx Patient age at admission
sex demographic_baseline.xlsx Patient sex (M/F)
nihss_admission demographic_baseline.xlsx NIH Stroke Scale score at admission
mrs_admission demographic_baseline.xlsx Modified Rankin Scale at admission
mrs_3month outcome.xlsx Modified Rankin Scale at 3 months (primary outcome)

Usage

from datasets import load_dataset

ds = load_dataset("hugging-science/isles24-stroke", split="train")

# Access a subject
example = ds[0]
print(example["subject_id"])      # "sub-stroke0001"
print(example["ncct"])            # Non-contrast CT array
print(example["dwi"])             # Diffusion-weighted MRI
print(example["lesion_mask"])     # Ground truth segmentation
print(example["nihss_admission"]) # NIH Stroke Scale at admission
print(example["mrs_3month"])      # Modified Rankin Scale at 3 months

Data Organization

The source data follows BIDS structure. This tree shows the actual Zenodo v7 layout:

train/
β”œβ”€β”€ clinical_data-description.xlsx
β”œβ”€β”€ raw_data/
β”‚   └── sub-stroke0001/
β”‚       └── ses-01/
β”‚           β”œβ”€β”€ sub-stroke0001_ses-01_ncct.nii.gz
β”‚           β”œβ”€β”€ sub-stroke0001_ses-01_cta.nii.gz
β”‚           β”œβ”€β”€ sub-stroke0001_ses-01_ctp.nii.gz
β”‚           └── perfusion-maps/
β”‚               β”œβ”€β”€ sub-stroke0001_ses-01_tmax.nii.gz
β”‚               β”œβ”€β”€ sub-stroke0001_ses-01_mtt.nii.gz
β”‚               β”œβ”€β”€ sub-stroke0001_ses-01_cbf.nii.gz
β”‚               └── sub-stroke0001_ses-01_cbv.nii.gz
β”œβ”€β”€ derivatives/
β”‚   └── sub-stroke0001/
β”‚       β”œβ”€β”€ ses-01/
β”‚       β”‚   β”œβ”€β”€ perfusion-maps/
β”‚       β”‚   β”‚   β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_tmax.nii.gz
β”‚       β”‚   β”‚   β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_mtt.nii.gz
β”‚       β”‚   β”‚   β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_cbf.nii.gz
β”‚       β”‚   β”‚   └── sub-stroke0001_ses-01_space-ncct_cbv.nii.gz
β”‚       β”‚   β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_cta.nii.gz
β”‚       β”‚   β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_ctp.nii.gz
β”‚       β”‚   β”œβ”€β”€ sub-stroke0001_ses-01_space-ncct_lvo-msk.nii.gz
β”‚       β”‚   └── sub-stroke0001_ses-01_space-ncct_cow-msk.nii.gz
β”‚       └── ses-02/
β”‚           β”œβ”€β”€ sub-stroke0001_ses-02_space-ncct_dwi.nii.gz
β”‚           β”œβ”€β”€ sub-stroke0001_ses-02_space-ncct_adc.nii.gz
β”‚           └── sub-stroke0001_ses-02_space-ncct_lesion-msk.nii.gz
└── phenotype/
    └── sub-stroke0001/
        β”œβ”€β”€ ses-01/
        └── ses-02/

Citation

When using this dataset, please cite:

@article{riedel2024isles,
  title={ISLES'24 -- A Real-World Longitudinal Multimodal Stroke Dataset},
  author={Riedel, Evamaria Olga and de la Rosa, Ezequiel and Baran, The Anh and
          Hernandez Petzsche, Moritz and Baazaoui, Hakim and Yang, Kaiyuan and
          Musio, Fabio Antonio and Huang, Houjing and Robben, David and
          Seia, Joaquin Oscar and Wiest, Roland and Reyes, Mauricio and
          Su, Ruisheng and Zimmer, Claus and Boeckh-Behrens, Tobias and
          Berndt, Maria and Menze, Bjoern and Rueckert, Daniel and
          Wiestler, Benedikt and Wegener, Susanne and Kirschke, Jan Stefan},
  journal={arXiv preprint arXiv:2408.11142},
  year={2024}
}

@article{delarosa2024isles,
  title={ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?},
  author={de la Rosa, Ezequiel and Su, Ruisheng and Reyes, Mauricio and
          Wiest, Roland and Riedel, Evamaria Olga and Kofler, Florian and
          others and Menze, Bjoern},
  journal={arXiv preprint arXiv:2408.10966},
  year={2024}
}

If using Circle of Willis masks, also cite:

@article{yang2023benchmarking,
  title={Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical
         Segmentation of the Circle of Willis for CTA and MRA},
  author={Yang, Kaiyuan and Musio, Fabio and Ma, Yue and Juchler, Norman and
          Paetzold, Johannes C and Al-Maskari, Rami and others and Menze, Bjoern},
  journal={arXiv preprint arXiv:2312.17670},
  year={2023}
}

Related Resources

Downloads last month
41

Space using hugging-science/isles24-stroke 1