Update files from the datasets library (from 1.9.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.9.0
- dataset_infos.json +0 -0
- xtreme.py +125 -44
dataset_infos.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
xtreme.py
CHANGED
|
@@ -220,10 +220,8 @@ _DESCRIPTIONS = {
|
|
| 220 |
"tatoeba": textwrap.dedent(
|
| 221 |
"""\
|
| 222 |
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
|
| 223 |
-
|
| 224 |
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
|
| 225 |
this paper for a description of the languages, their families and scripts as well as baseline results.
|
| 226 |
-
|
| 227 |
Please note that the English sentences are not identical for all language pairs. This means that the results are
|
| 228 |
not directly comparable across languages. In particular, the sentences tend to have less variety for several
|
| 229 |
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
|
|
@@ -352,15 +350,52 @@ _CITATIONS = {
|
|
| 352 |
}
|
| 353 |
|
| 354 |
_TEXT_FEATURES = {
|
| 355 |
-
"XNLI": {
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
"PAWS-X": {"sentence1": "sentence1", "sentence2": "sentence2"},
|
| 362 |
-
"udpos": {"
|
| 363 |
-
"SQuAD": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
"PAN-X": {"tokens": "", "ner_tags": "", "lang": ""},
|
| 365 |
}
|
| 366 |
_DATA_URLS = {
|
|
@@ -395,7 +430,6 @@ class XtremeConfig(datasets.BuilderConfig):
|
|
| 395 |
|
| 396 |
def __init__(self, data_url, citation, url, text_features, **kwargs):
|
| 397 |
"""
|
| 398 |
-
|
| 399 |
Args:
|
| 400 |
text_features: `dict[string, string]`, map from the name of the feature
|
| 401 |
dict for each text field to the name of the column in the tsv file
|
|
@@ -432,7 +466,10 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 432 |
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
| 433 |
if "answers" in features.keys():
|
| 434 |
features["answers"] = datasets.features.Sequence(
|
| 435 |
-
{
|
|
|
|
|
|
|
|
|
|
| 436 |
)
|
| 437 |
if self.config.name.startswith("PAWS-X"):
|
| 438 |
features["label"] = datasets.Value("string")
|
|
@@ -442,27 +479,29 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 442 |
if self.config.name.startswith("udpos"):
|
| 443 |
features = datasets.Features(
|
| 444 |
{
|
| 445 |
-
"
|
| 446 |
-
"
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
|
|
|
|
|
|
| 466 |
),
|
| 467 |
}
|
| 468 |
)
|
|
@@ -535,10 +574,12 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 535 |
data_dir = os.path.join(dl_dir, "XNLI-1.0")
|
| 536 |
return [
|
| 537 |
datasets.SplitGenerator(
|
| 538 |
-
name=datasets.Split.TEST,
|
|
|
|
| 539 |
),
|
| 540 |
datasets.SplitGenerator(
|
| 541 |
-
name=datasets.Split.VALIDATION,
|
|
|
|
| 542 |
),
|
| 543 |
]
|
| 544 |
|
|
@@ -625,10 +666,16 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 625 |
if self.config.name.startswith("bucc18"):
|
| 626 |
lang = self.config.name.split(".")[1]
|
| 627 |
bucc18_dl_test_dir = dl_manager.download_and_extract(
|
| 628 |
-
os.path.join(
|
|
|
|
|
|
|
|
|
|
| 629 |
)
|
| 630 |
bucc18_dl_dev_dir = dl_manager.download_and_extract(
|
| 631 |
-
os.path.join(
|
|
|
|
|
|
|
|
|
|
| 632 |
)
|
| 633 |
return [
|
| 634 |
datasets.SplitGenerator(
|
|
@@ -742,9 +789,13 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 742 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 743 |
|
| 744 |
return [
|
| 745 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
| 746 |
datasets.SplitGenerator(
|
| 747 |
-
name=datasets.Split.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 748 |
),
|
| 749 |
]
|
| 750 |
|
|
@@ -796,7 +847,10 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 796 |
"context": context,
|
| 797 |
"question": question,
|
| 798 |
"id": id_,
|
| 799 |
-
"answers": {
|
|
|
|
|
|
|
|
|
|
| 800 |
}
|
| 801 |
if self.config.name == "XNLI":
|
| 802 |
with open(filepath, encoding="utf-8") as f:
|
|
@@ -814,7 +868,11 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 814 |
next(data) # skip header
|
| 815 |
for id_, row in enumerate(data):
|
| 816 |
if len(row) == 4:
|
| 817 |
-
yield id_, {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 818 |
if self.config.name.startswith("XQuAD"):
|
| 819 |
with open(filepath, encoding="utf-8") as f:
|
| 820 |
xquad = json.load(f)
|
|
@@ -834,7 +892,10 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 834 |
"context": context,
|
| 835 |
"question": question,
|
| 836 |
"id": id_,
|
| 837 |
-
"answers": {
|
|
|
|
|
|
|
|
|
|
| 838 |
}
|
| 839 |
if self.config.name.startswith("bucc18"):
|
| 840 |
files = sorted(os.listdir(filepath))
|
|
@@ -900,9 +961,19 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 900 |
for id_file, file in enumerate(filepath):
|
| 901 |
with open(file, encoding="utf-8") as f:
|
| 902 |
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
|
|
|
|
|
|
| 903 |
for id_row, row in enumerate(data):
|
| 904 |
if len(row) >= 10 and row[1] != "_" and row[3] != "_":
|
| 905 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 906 |
if self.config.name.startswith("PAN-X"):
|
| 907 |
guid_index = 1
|
| 908 |
with open(filepath, encoding="utf-8") as f:
|
|
@@ -912,7 +983,11 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 912 |
for line in f:
|
| 913 |
if line == "" or line == "\n":
|
| 914 |
if tokens:
|
| 915 |
-
yield guid_index, {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 916 |
guid_index += 1
|
| 917 |
tokens = []
|
| 918 |
ner_tags = []
|
|
@@ -928,3 +1003,9 @@ class Xtreme(datasets.GeneratorBasedBuilder):
|
|
| 928 |
else:
|
| 929 |
# examples have no label in test set
|
| 930 |
ner_tags.append("O")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
"tatoeba": textwrap.dedent(
|
| 221 |
"""\
|
| 222 |
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
|
|
|
|
| 223 |
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
|
| 224 |
this paper for a description of the languages, their families and scripts as well as baseline results.
|
|
|
|
| 225 |
Please note that the English sentences are not identical for all language pairs. This means that the results are
|
| 226 |
not directly comparable across languages. In particular, the sentences tend to have less variety for several
|
| 227 |
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
|
|
|
|
| 350 |
}
|
| 351 |
|
| 352 |
_TEXT_FEATURES = {
|
| 353 |
+
"XNLI": {
|
| 354 |
+
"language": "language",
|
| 355 |
+
"sentence1": "sentence1",
|
| 356 |
+
"sentence2": "sentence2",
|
| 357 |
+
},
|
| 358 |
+
"tydiqa": {
|
| 359 |
+
"id": "id",
|
| 360 |
+
"title": "title",
|
| 361 |
+
"context": "context",
|
| 362 |
+
"question": "question",
|
| 363 |
+
"answers": "answers",
|
| 364 |
+
},
|
| 365 |
+
"XQuAD": {
|
| 366 |
+
"id": "id",
|
| 367 |
+
"context": "context",
|
| 368 |
+
"question": "question",
|
| 369 |
+
"answers": "answers",
|
| 370 |
+
},
|
| 371 |
+
"MLQA": {
|
| 372 |
+
"id": "id",
|
| 373 |
+
"title": "title",
|
| 374 |
+
"context": "context",
|
| 375 |
+
"question": "question",
|
| 376 |
+
"answers": "answers",
|
| 377 |
+
},
|
| 378 |
+
"tatoeba": {
|
| 379 |
+
"source_sentence": "",
|
| 380 |
+
"target_sentence": "",
|
| 381 |
+
"source_lang": "",
|
| 382 |
+
"target_lang": "",
|
| 383 |
+
},
|
| 384 |
+
"bucc18": {
|
| 385 |
+
"source_sentence": "",
|
| 386 |
+
"target_sentence": "",
|
| 387 |
+
"source_lang": "",
|
| 388 |
+
"target_lang": "",
|
| 389 |
+
},
|
| 390 |
"PAWS-X": {"sentence1": "sentence1", "sentence2": "sentence2"},
|
| 391 |
+
"udpos": {"tokens": "", "pos_tags": ""},
|
| 392 |
+
"SQuAD": {
|
| 393 |
+
"id": "id",
|
| 394 |
+
"title": "title",
|
| 395 |
+
"context": "context",
|
| 396 |
+
"question": "question",
|
| 397 |
+
"answers": "answers",
|
| 398 |
+
},
|
| 399 |
"PAN-X": {"tokens": "", "ner_tags": "", "lang": ""},
|
| 400 |
}
|
| 401 |
_DATA_URLS = {
|
|
|
|
| 430 |
|
| 431 |
def __init__(self, data_url, citation, url, text_features, **kwargs):
|
| 432 |
"""
|
|
|
|
| 433 |
Args:
|
| 434 |
text_features: `dict[string, string]`, map from the name of the feature
|
| 435 |
dict for each text field to the name of the column in the tsv file
|
|
|
|
| 466 |
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
| 467 |
if "answers" in features.keys():
|
| 468 |
features["answers"] = datasets.features.Sequence(
|
| 469 |
+
{
|
| 470 |
+
"answer_start": datasets.Value("int32"),
|
| 471 |
+
"text": datasets.Value("string"),
|
| 472 |
+
}
|
| 473 |
)
|
| 474 |
if self.config.name.startswith("PAWS-X"):
|
| 475 |
features["label"] = datasets.Value("string")
|
|
|
|
| 479 |
if self.config.name.startswith("udpos"):
|
| 480 |
features = datasets.Features(
|
| 481 |
{
|
| 482 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 483 |
+
"pos_tags": datasets.Sequence(
|
| 484 |
+
datasets.features.ClassLabel(
|
| 485 |
+
names=[
|
| 486 |
+
"ADJ",
|
| 487 |
+
"ADP",
|
| 488 |
+
"ADV",
|
| 489 |
+
"AUX",
|
| 490 |
+
"CCONJ",
|
| 491 |
+
"DET",
|
| 492 |
+
"INTJ",
|
| 493 |
+
"NOUN",
|
| 494 |
+
"NUM",
|
| 495 |
+
"PART",
|
| 496 |
+
"PRON",
|
| 497 |
+
"PROPN",
|
| 498 |
+
"PUNCT",
|
| 499 |
+
"SCONJ",
|
| 500 |
+
"SYM",
|
| 501 |
+
"VERB",
|
| 502 |
+
"X",
|
| 503 |
+
]
|
| 504 |
+
)
|
| 505 |
),
|
| 506 |
}
|
| 507 |
)
|
|
|
|
| 574 |
data_dir = os.path.join(dl_dir, "XNLI-1.0")
|
| 575 |
return [
|
| 576 |
datasets.SplitGenerator(
|
| 577 |
+
name=datasets.Split.TEST,
|
| 578 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "xnli.test.tsv")},
|
| 579 |
),
|
| 580 |
datasets.SplitGenerator(
|
| 581 |
+
name=datasets.Split.VALIDATION,
|
| 582 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "xnli.dev.tsv")},
|
| 583 |
),
|
| 584 |
]
|
| 585 |
|
|
|
|
| 666 |
if self.config.name.startswith("bucc18"):
|
| 667 |
lang = self.config.name.split(".")[1]
|
| 668 |
bucc18_dl_test_dir = dl_manager.download_and_extract(
|
| 669 |
+
os.path.join(
|
| 670 |
+
self.config.data_url,
|
| 671 |
+
"bucc2018-{}-en.training-gold.tar.bz2".format(lang),
|
| 672 |
+
)
|
| 673 |
)
|
| 674 |
bucc18_dl_dev_dir = dl_manager.download_and_extract(
|
| 675 |
+
os.path.join(
|
| 676 |
+
self.config.data_url,
|
| 677 |
+
"bucc2018-{}-en.sample-gold.tar.bz2".format(lang),
|
| 678 |
+
)
|
| 679 |
)
|
| 680 |
return [
|
| 681 |
datasets.SplitGenerator(
|
|
|
|
| 789 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 790 |
|
| 791 |
return [
|
|
|
|
| 792 |
datasets.SplitGenerator(
|
| 793 |
+
name=datasets.Split.TRAIN,
|
| 794 |
+
gen_kwargs={"filepath": downloaded_files["train"]},
|
| 795 |
+
),
|
| 796 |
+
datasets.SplitGenerator(
|
| 797 |
+
name=datasets.Split.VALIDATION,
|
| 798 |
+
gen_kwargs={"filepath": downloaded_files["dev"]},
|
| 799 |
),
|
| 800 |
]
|
| 801 |
|
|
|
|
| 847 |
"context": context,
|
| 848 |
"question": question,
|
| 849 |
"id": id_,
|
| 850 |
+
"answers": {
|
| 851 |
+
"answer_start": answer_starts,
|
| 852 |
+
"text": answers,
|
| 853 |
+
},
|
| 854 |
}
|
| 855 |
if self.config.name == "XNLI":
|
| 856 |
with open(filepath, encoding="utf-8") as f:
|
|
|
|
| 868 |
next(data) # skip header
|
| 869 |
for id_, row in enumerate(data):
|
| 870 |
if len(row) == 4:
|
| 871 |
+
yield id_, {
|
| 872 |
+
"sentence1": row[1],
|
| 873 |
+
"sentence2": row[2],
|
| 874 |
+
"label": row[3],
|
| 875 |
+
}
|
| 876 |
if self.config.name.startswith("XQuAD"):
|
| 877 |
with open(filepath, encoding="utf-8") as f:
|
| 878 |
xquad = json.load(f)
|
|
|
|
| 892 |
"context": context,
|
| 893 |
"question": question,
|
| 894 |
"id": id_,
|
| 895 |
+
"answers": {
|
| 896 |
+
"answer_start": answer_starts,
|
| 897 |
+
"text": answers,
|
| 898 |
+
},
|
| 899 |
}
|
| 900 |
if self.config.name.startswith("bucc18"):
|
| 901 |
files = sorted(os.listdir(filepath))
|
|
|
|
| 961 |
for id_file, file in enumerate(filepath):
|
| 962 |
with open(file, encoding="utf-8") as f:
|
| 963 |
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 964 |
+
tokens = []
|
| 965 |
+
pos_tags = []
|
| 966 |
for id_row, row in enumerate(data):
|
| 967 |
if len(row) >= 10 and row[1] != "_" and row[3] != "_":
|
| 968 |
+
tokens.append(row[1])
|
| 969 |
+
pos_tags.append(row[3])
|
| 970 |
+
if len(row) == 0 and len(tokens) > 0:
|
| 971 |
+
yield str(id_file) + "_" + str(id_row), {
|
| 972 |
+
"tokens": tokens,
|
| 973 |
+
"pos_tags": pos_tags,
|
| 974 |
+
}
|
| 975 |
+
tokens = []
|
| 976 |
+
pos_tags = []
|
| 977 |
if self.config.name.startswith("PAN-X"):
|
| 978 |
guid_index = 1
|
| 979 |
with open(filepath, encoding="utf-8") as f:
|
|
|
|
| 983 |
for line in f:
|
| 984 |
if line == "" or line == "\n":
|
| 985 |
if tokens:
|
| 986 |
+
yield guid_index, {
|
| 987 |
+
"tokens": tokens,
|
| 988 |
+
"ner_tags": ner_tags,
|
| 989 |
+
"langs": langs,
|
| 990 |
+
}
|
| 991 |
guid_index += 1
|
| 992 |
tokens = []
|
| 993 |
ner_tags = []
|
|
|
|
| 1003 |
else:
|
| 1004 |
# examples have no label in test set
|
| 1005 |
ner_tags.append("O")
|
| 1006 |
+
if tokens:
|
| 1007 |
+
yield guid_index, {
|
| 1008 |
+
"tokens": tokens,
|
| 1009 |
+
"ner_tags": ner_tags,
|
| 1010 |
+
"langs": langs,
|
| 1011 |
+
}
|