Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -41,11 +41,11 @@ size_categories:
|
|
| 41 |
---
|
| 42 |
# Dataset Card for Fed-ISIC-2019
|
| 43 |
|
| 44 |
-
Federated version of ISIC-2019 Datasets ([ISIC2019 challenge](https://challenge.isic-archive.com/landing/2019/) and the [HAM1000 database](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T)).
|
| 45 |
|
| 46 |
## Dataset Details
|
| 47 |
|
| 48 |
-
The dataset contains 23,247 images of skin lesions. The number of samples for
|
| 49 |
|
| 50 |
| center_id | Train | Test |
|
| 51 |
|:---------:|:-------:|:------:|
|
|
@@ -87,6 +87,65 @@ partition_train = fds.load_partition(partition_id=0, split="train")
|
|
| 87 |
partition_test = fds.load_partition(partition_id=0, split="test")
|
| 88 |
```
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
## Dataset Structure
|
| 91 |
|
| 92 |
### Data Instances
|
|
|
|
| 41 |
---
|
| 42 |
# Dataset Card for Fed-ISIC-2019
|
| 43 |
|
| 44 |
+
Federated version of ISIC-2019 Datasets ([ISIC2019 challenge](https://challenge.isic-archive.com/landing/2019/) and the [HAM1000 database](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T)). This implementation is derived based on the [FLamby](https://github.com/owkin/FLamby/blob/main/flamby/datasets/fed_isic2019/README.md) implementation.
|
| 45 |
|
| 46 |
## Dataset Details
|
| 47 |
|
| 48 |
+
The dataset contains 23,247 images of skin lesions divided among 6 clients representing different data centers. The number of samples for training/testing per data center is displayed in the table below:
|
| 49 |
|
| 50 |
| center_id | Train | Test |
|
| 51 |
|:---------:|:-------:|:------:|
|
|
|
|
| 87 |
partition_test = fds.load_partition(partition_id=0, split="test")
|
| 88 |
```
|
| 89 |
|
| 90 |
+
```
|
| 91 |
+
# Note: to keep the same results as in FLamby, please apply the following transformation
|
| 92 |
+
import albumentations
|
| 93 |
+
import random
|
| 94 |
+
import numpy as np
|
| 95 |
+
import torch
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Train dataset transformations
|
| 99 |
+
def apply_train_transforms(image_input):
|
| 100 |
+
print(image_input)
|
| 101 |
+
size = 200
|
| 102 |
+
train_transforms = albumentations.Compose(
|
| 103 |
+
[
|
| 104 |
+
albumentations.RandomScale(0.07),
|
| 105 |
+
albumentations.Rotate(50),
|
| 106 |
+
albumentations.RandomBrightnessContrast(0.15, 0.1),
|
| 107 |
+
albumentations.Flip(p=0.5),
|
| 108 |
+
albumentations.Affine(shear=0.1),
|
| 109 |
+
albumentations.RandomCrop(size, size),
|
| 110 |
+
albumentations.CoarseDropout(random.randint(1, 8), 16, 16),
|
| 111 |
+
albumentations.Normalize(always_apply=True),
|
| 112 |
+
]
|
| 113 |
+
)
|
| 114 |
+
images = []
|
| 115 |
+
for image in image_input["image"]:
|
| 116 |
+
augmented = train_transforms(image=np.array(image))["image"]
|
| 117 |
+
transposed = np.transpose(augmented, (2, 0, 1)).astype(np.float32)
|
| 118 |
+
images.append(torch.tensor(transposed, dtype=torch.float32))
|
| 119 |
+
image_input["image"] = images
|
| 120 |
+
return image_input
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
partition_train = partition_train.with_transform(apply_train_transforms,
|
| 124 |
+
columns="image")
|
| 125 |
+
|
| 126 |
+
# Test dataset transformations
|
| 127 |
+
def apply_test_transforms(image_input):
|
| 128 |
+
print(image_input)
|
| 129 |
+
size = 200
|
| 130 |
+
test_transforms = albumentations.Compose(
|
| 131 |
+
[
|
| 132 |
+
albumentations.CenterCrop(size, size),
|
| 133 |
+
albumentations.Normalize(always_apply=True),
|
| 134 |
+
]
|
| 135 |
+
)
|
| 136 |
+
images = []
|
| 137 |
+
for image in image_input["image"]:
|
| 138 |
+
augmented = test_transforms(image=np.array(image))["image"]
|
| 139 |
+
transposed = np.transpose(augmented, (2, 0, 1)).astype(np.float32)
|
| 140 |
+
images.append(torch.tensor(transposed, dtype=torch.float32))
|
| 141 |
+
image_input["image"] = images
|
| 142 |
+
return image_input
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
partition_test = partition_test.with_transform(apply_test_transforms,
|
| 146 |
+
columns="image")
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
## Dataset Structure
|
| 150 |
|
| 151 |
### Data Instances
|