Datasets:
Delete loading script
Browse files- conll2003.py +0 -244
conll2003.py
DELETED
|
@@ -1,244 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
|
| 18 |
-
|
| 19 |
-
import os
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
logger = datasets.logging.get_logger(__name__)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
_CITATION = """\
|
| 28 |
-
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
|
| 29 |
-
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
|
| 30 |
-
author = "Tjong Kim Sang, Erik F. and
|
| 31 |
-
De Meulder, Fien",
|
| 32 |
-
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
|
| 33 |
-
year = "2003",
|
| 34 |
-
url = "https://www.aclweb.org/anthology/W03-0419",
|
| 35 |
-
pages = "142--147",
|
| 36 |
-
}
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
_DESCRIPTION = """\
|
| 40 |
-
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
|
| 41 |
-
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
|
| 42 |
-
not belong to the previous three groups.
|
| 43 |
-
|
| 44 |
-
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
|
| 45 |
-
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
|
| 46 |
-
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
|
| 47 |
-
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
|
| 48 |
-
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
|
| 49 |
-
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
|
| 50 |
-
tagging scheme, whereas the original dataset uses IOB1.
|
| 51 |
-
|
| 52 |
-
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
|
| 53 |
-
"""
|
| 54 |
-
|
| 55 |
-
_URL = "https://data.deepai.org/conll2003.zip"
|
| 56 |
-
_TRAINING_FILE = "train.txt"
|
| 57 |
-
_DEV_FILE = "valid.txt"
|
| 58 |
-
_TEST_FILE = "test.txt"
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
class Conll2003Config(datasets.BuilderConfig):
|
| 62 |
-
"""BuilderConfig for Conll2003"""
|
| 63 |
-
|
| 64 |
-
def __init__(self, **kwargs):
|
| 65 |
-
"""BuilderConfig forConll2003.
|
| 66 |
-
|
| 67 |
-
Args:
|
| 68 |
-
**kwargs: keyword arguments forwarded to super.
|
| 69 |
-
"""
|
| 70 |
-
super(Conll2003Config, self).__init__(**kwargs)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
class Conll2003(datasets.GeneratorBasedBuilder):
|
| 74 |
-
"""Conll2003 dataset."""
|
| 75 |
-
|
| 76 |
-
BUILDER_CONFIGS = [
|
| 77 |
-
Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
|
| 78 |
-
]
|
| 79 |
-
|
| 80 |
-
def _info(self):
|
| 81 |
-
return datasets.DatasetInfo(
|
| 82 |
-
description=_DESCRIPTION,
|
| 83 |
-
features=datasets.Features(
|
| 84 |
-
{
|
| 85 |
-
"id": datasets.Value("string"),
|
| 86 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 87 |
-
"pos_tags": datasets.Sequence(
|
| 88 |
-
datasets.features.ClassLabel(
|
| 89 |
-
names=[
|
| 90 |
-
'"',
|
| 91 |
-
"''",
|
| 92 |
-
"#",
|
| 93 |
-
"$",
|
| 94 |
-
"(",
|
| 95 |
-
")",
|
| 96 |
-
",",
|
| 97 |
-
".",
|
| 98 |
-
":",
|
| 99 |
-
"``",
|
| 100 |
-
"CC",
|
| 101 |
-
"CD",
|
| 102 |
-
"DT",
|
| 103 |
-
"EX",
|
| 104 |
-
"FW",
|
| 105 |
-
"IN",
|
| 106 |
-
"JJ",
|
| 107 |
-
"JJR",
|
| 108 |
-
"JJS",
|
| 109 |
-
"LS",
|
| 110 |
-
"MD",
|
| 111 |
-
"NN",
|
| 112 |
-
"NNP",
|
| 113 |
-
"NNPS",
|
| 114 |
-
"NNS",
|
| 115 |
-
"NN|SYM",
|
| 116 |
-
"PDT",
|
| 117 |
-
"POS",
|
| 118 |
-
"PRP",
|
| 119 |
-
"PRP$",
|
| 120 |
-
"RB",
|
| 121 |
-
"RBR",
|
| 122 |
-
"RBS",
|
| 123 |
-
"RP",
|
| 124 |
-
"SYM",
|
| 125 |
-
"TO",
|
| 126 |
-
"UH",
|
| 127 |
-
"VB",
|
| 128 |
-
"VBD",
|
| 129 |
-
"VBG",
|
| 130 |
-
"VBN",
|
| 131 |
-
"VBP",
|
| 132 |
-
"VBZ",
|
| 133 |
-
"WDT",
|
| 134 |
-
"WP",
|
| 135 |
-
"WP$",
|
| 136 |
-
"WRB",
|
| 137 |
-
]
|
| 138 |
-
)
|
| 139 |
-
),
|
| 140 |
-
"chunk_tags": datasets.Sequence(
|
| 141 |
-
datasets.features.ClassLabel(
|
| 142 |
-
names=[
|
| 143 |
-
"O",
|
| 144 |
-
"B-ADJP",
|
| 145 |
-
"I-ADJP",
|
| 146 |
-
"B-ADVP",
|
| 147 |
-
"I-ADVP",
|
| 148 |
-
"B-CONJP",
|
| 149 |
-
"I-CONJP",
|
| 150 |
-
"B-INTJ",
|
| 151 |
-
"I-INTJ",
|
| 152 |
-
"B-LST",
|
| 153 |
-
"I-LST",
|
| 154 |
-
"B-NP",
|
| 155 |
-
"I-NP",
|
| 156 |
-
"B-PP",
|
| 157 |
-
"I-PP",
|
| 158 |
-
"B-PRT",
|
| 159 |
-
"I-PRT",
|
| 160 |
-
"B-SBAR",
|
| 161 |
-
"I-SBAR",
|
| 162 |
-
"B-UCP",
|
| 163 |
-
"I-UCP",
|
| 164 |
-
"B-VP",
|
| 165 |
-
"I-VP",
|
| 166 |
-
]
|
| 167 |
-
)
|
| 168 |
-
),
|
| 169 |
-
"ner_tags": datasets.Sequence(
|
| 170 |
-
datasets.features.ClassLabel(
|
| 171 |
-
names=[
|
| 172 |
-
"O",
|
| 173 |
-
"B-PER",
|
| 174 |
-
"I-PER",
|
| 175 |
-
"B-ORG",
|
| 176 |
-
"I-ORG",
|
| 177 |
-
"B-LOC",
|
| 178 |
-
"I-LOC",
|
| 179 |
-
"B-MISC",
|
| 180 |
-
"I-MISC",
|
| 181 |
-
]
|
| 182 |
-
)
|
| 183 |
-
),
|
| 184 |
-
}
|
| 185 |
-
),
|
| 186 |
-
supervised_keys=None,
|
| 187 |
-
homepage="https://www.aclweb.org/anthology/W03-0419/",
|
| 188 |
-
citation=_CITATION,
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
def _split_generators(self, dl_manager):
|
| 192 |
-
"""Returns SplitGenerators."""
|
| 193 |
-
downloaded_file = dl_manager.download_and_extract(_URL)
|
| 194 |
-
data_files = {
|
| 195 |
-
"train": os.path.join(downloaded_file, _TRAINING_FILE),
|
| 196 |
-
"dev": os.path.join(downloaded_file, _DEV_FILE),
|
| 197 |
-
"test": os.path.join(downloaded_file, _TEST_FILE),
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
return [
|
| 201 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
|
| 202 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
|
| 203 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
|
| 204 |
-
]
|
| 205 |
-
|
| 206 |
-
def _generate_examples(self, filepath):
|
| 207 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
| 208 |
-
with open(filepath, encoding="utf-8") as f:
|
| 209 |
-
guid = 0
|
| 210 |
-
tokens = []
|
| 211 |
-
pos_tags = []
|
| 212 |
-
chunk_tags = []
|
| 213 |
-
ner_tags = []
|
| 214 |
-
for line in f:
|
| 215 |
-
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
| 216 |
-
if tokens:
|
| 217 |
-
yield guid, {
|
| 218 |
-
"id": str(guid),
|
| 219 |
-
"tokens": tokens,
|
| 220 |
-
"pos_tags": pos_tags,
|
| 221 |
-
"chunk_tags": chunk_tags,
|
| 222 |
-
"ner_tags": ner_tags,
|
| 223 |
-
}
|
| 224 |
-
guid += 1
|
| 225 |
-
tokens = []
|
| 226 |
-
pos_tags = []
|
| 227 |
-
chunk_tags = []
|
| 228 |
-
ner_tags = []
|
| 229 |
-
else:
|
| 230 |
-
# conll2003 tokens are space separated
|
| 231 |
-
splits = line.split(" ")
|
| 232 |
-
tokens.append(splits[0])
|
| 233 |
-
pos_tags.append(splits[1])
|
| 234 |
-
chunk_tags.append(splits[2])
|
| 235 |
-
ner_tags.append(splits[3].rstrip())
|
| 236 |
-
# last example
|
| 237 |
-
if tokens:
|
| 238 |
-
yield guid, {
|
| 239 |
-
"id": str(guid),
|
| 240 |
-
"tokens": tokens,
|
| 241 |
-
"pos_tags": pos_tags,
|
| 242 |
-
"chunk_tags": chunk_tags,
|
| 243 |
-
"ner_tags": ner_tags,
|
| 244 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|