Dataset Viewer
Auto-converted to Parquet Duplicate
sample_id
stringlengths
12
12
population
stringclasses
5 values
region
stringclasses
5 values
is_SSA
bool
2 classes
sex
stringclasses
2 values
age_years
float64
18
89.2
βŒ€
facility_type
stringclasses
3 values
urban_rural
stringclasses
3 values
distance_km
float64
0.5
143
ses
stringclasses
3 values
insurance_status
stringclasses
3 values
baseline_pathology_ordered
bool
2 classes
baseline_pathology_result_available
bool
2 classes
baseline_cbc_ordered
bool
2 classes
baseline_cbc_result_available
bool
2 classes
baseline_imaging_ordered
bool
2 classes
baseline_imaging_result_available
bool
2 classes
MD_PAT_00001
SSA_West
West
true
Male
45.2
Regional_hospital
Rural
85.3
Low
None
false
false
true
true
true
true
MD_PAT_00002
SSA_West
West
true
Female
64
District_hospital
Urban
8.7
Low
None
true
true
false
false
false
false
MD_PAT_00003
SSA_West
West
true
Female
62.1
Regional_hospital
Rural
66.6
Low
None
true
true
false
false
false
false
MD_PAT_00004
SSA_West
West
true
Female
64.1
Regional_hospital
Rural
75.7
Low
None
true
true
true
true
true
true
MD_PAT_00005
SSA_West
West
true
Male
58.9
Regional_hospital
Urban
7.2
Low
None
true
true
false
false
true
true
MD_PAT_00006
SSA_West
West
true
Female
55.1
Regional_hospital
Rural
71.1
Low
None
true
true
true
true
true
true
MD_PAT_00007
SSA_West
West
true
Female
38.3
District_hospital
Periurban
0.7
Low
National_insurance
false
false
true
false
false
false
MD_PAT_00008
SSA_West
West
true
Female
44.5
Regional_hospital
Periurban
37.2
Low
None
true
true
true
true
false
false
MD_PAT_00009
SSA_West
West
true
Female
60.3
Regional_hospital
Periurban
21.4
High
None
true
true
false
false
true
true
MD_PAT_00010
SSA_West
West
true
Female
55.5
Regional_hospital
Urban
2.7
Middle
National_insurance
true
true
false
false
true
true
MD_PAT_00011
SSA_West
West
true
Female
58.8
Regional_hospital
Urban
7.8
High
None
true
true
true
true
true
true
MD_PAT_00012
SSA_West
West
true
Female
41.9
Regional_hospital
Rural
45.5
Low
Private
true
true
true
true
true
true
MD_PAT_00013
SSA_West
West
true
Female
47.6
Regional_hospital
Periurban
16.2
Middle
None
true
false
false
false
false
false
MD_PAT_00014
SSA_West
West
true
Female
53.2
District_hospital
Urban
8.7
Low
Private
false
false
true
true
false
false
MD_PAT_00015
SSA_West
West
true
Male
62
Regional_hospital
Urban
6.4
Middle
None
true
true
true
true
true
true
MD_PAT_00016
SSA_West
West
true
Female
41.6
Tertiary_urban
Urban
5.3
Middle
None
true
false
true
true
true
true
MD_PAT_00017
SSA_West
West
true
Female
46
Regional_hospital
Urban
9.5
High
National_insurance
true
false
true
true
true
true
MD_PAT_00018
SSA_West
West
true
Female
56.7
Tertiary_urban
Periurban
5.2
Low
None
true
true
true
true
true
true
MD_PAT_00019
SSA_West
West
true
Female
57.8
District_hospital
Rural
73.5
Low
None
true
true
false
false
true
false
MD_PAT_00020
SSA_West
West
true
Female
40.1
Regional_hospital
Periurban
13.6
Low
None
true
true
true
true
false
false
MD_PAT_00021
SSA_West
West
true
Female
52.1
District_hospital
Rural
88.4
Low
None
true
true
true
true
true
true
MD_PAT_00022
SSA_West
West
true
Female
48.9
Tertiary_urban
Urban
5.9
Low
None
true
true
true
true
true
true
MD_PAT_00023
SSA_West
West
true
Female
60
Regional_hospital
Urban
1.5
Low
National_insurance
true
true
false
false
true
true
MD_PAT_00024
SSA_West
West
true
Female
45
Regional_hospital
Urban
10.3
Middle
None
true
true
true
true
true
true
MD_PAT_00025
SSA_West
West
true
Female
55.9
District_hospital
Urban
3.6
High
None
true
false
false
false
true
true
MD_PAT_00026
SSA_West
West
true
Female
65.4
District_hospital
Periurban
8.3
Low
None
true
true
true
true
true
false
MD_PAT_00027
SSA_West
West
true
Female
53.1
District_hospital
Rural
78.3
Middle
Private
true
false
true
true
false
false
MD_PAT_00028
SSA_West
West
true
Female
46.6
Tertiary_urban
Rural
58.1
Middle
Private
true
true
false
false
true
true
MD_PAT_00029
SSA_West
West
true
Female
68.2
Regional_hospital
Urban
9
Low
None
true
true
true
true
false
false
MD_PAT_00030
SSA_West
West
true
Female
70.7
Regional_hospital
Urban
4.7
Low
None
true
false
true
true
true
true
MD_PAT_00031
SSA_West
West
true
Female
64.6
District_hospital
Urban
0.5
Middle
National_insurance
false
false
false
false
false
false
MD_PAT_00032
SSA_West
West
true
Female
52.5
District_hospital
Rural
85.6
Low
National_insurance
true
false
false
false
true
false
MD_PAT_00033
SSA_West
West
true
Female
35.2
Tertiary_urban
Periurban
24
Low
None
true
true
true
true
true
true
MD_PAT_00034
SSA_West
West
true
Female
47.2
District_hospital
Periurban
20
Low
National_insurance
true
true
false
false
false
false
MD_PAT_00035
SSA_West
West
true
Female
56.4
District_hospital
Urban
6.6
Middle
None
true
false
true
true
false
false
MD_PAT_00036
SSA_West
West
true
Female
57.4
Regional_hospital
Rural
55.8
Middle
None
true
true
true
true
true
true
MD_PAT_00037
SSA_West
West
true
Female
63.3
Tertiary_urban
Rural
74.5
Middle
None
true
true
true
true
true
true
MD_PAT_00038
SSA_West
West
true
Female
52.7
Tertiary_urban
Urban
7.4
High
None
true
true
true
true
true
true
MD_PAT_00039
SSA_West
West
true
Female
36.8
Regional_hospital
Urban
2.1
Low
None
true
false
true
true
true
true
MD_PAT_00040
SSA_West
West
true
Female
67.5
Regional_hospital
Periurban
28
Low
None
true
true
true
true
false
false
MD_PAT_00041
SSA_West
West
true
Female
52.1
Tertiary_urban
Rural
51.3
Low
None
true
true
true
true
true
true
MD_PAT_00042
SSA_West
West
true
Female
35.9
Regional_hospital
Rural
68.9
Low
National_insurance
false
false
false
false
true
true
MD_PAT_00043
SSA_West
West
true
Female
57.9
Regional_hospital
Rural
20.6
Low
None
true
true
true
true
false
false
MD_PAT_00044
SSA_West
West
true
Female
47.5
Regional_hospital
Rural
32.1
Low
None
true
true
true
true
true
true
MD_PAT_00045
SSA_West
West
true
Female
64.7
Regional_hospital
Urban
9.7
Middle
None
true
true
true
true
true
true
MD_PAT_00046
SSA_West
West
true
Female
59.4
District_hospital
Urban
7.5
Low
None
true
true
true
true
true
true
MD_PAT_00047
SSA_West
West
true
Female
63.3
Regional_hospital
Periurban
0.5
Low
None
true
true
true
true
true
true
MD_PAT_00048
SSA_West
West
true
Male
52.7
District_hospital
Urban
5.1
Low
None
true
true
true
true
true
false
MD_PAT_00049
SSA_West
West
true
Female
38.2
Tertiary_urban
Urban
7.5
Low
None
false
false
true
true
true
true
MD_PAT_00050
SSA_West
West
true
Male
44.1
Regional_hospital
Periurban
9.7
Middle
None
true
false
true
true
true
true
MD_PAT_00051
SSA_West
West
true
Female
49.3
Tertiary_urban
Periurban
29.6
Low
National_insurance
true
true
true
true
true
true
MD_PAT_00052
SSA_West
West
true
Female
70
Regional_hospital
Urban
3.5
Middle
None
true
true
true
true
true
true
MD_PAT_00053
SSA_West
West
true
Female
45.7
Tertiary_urban
Periurban
31.3
High
None
true
true
true
true
true
true
MD_PAT_00054
SSA_West
West
true
Female
65.1
Regional_hospital
Urban
0.5
Low
None
false
false
true
true
true
true
MD_PAT_00055
SSA_West
West
true
Female
53.8
District_hospital
Periurban
13.7
Middle
Private
true
true
true
true
false
false
MD_PAT_00056
SSA_West
West
true
Female
43.1
Regional_hospital
Periurban
6.6
Middle
National_insurance
true
true
false
false
true
false
MD_PAT_00057
SSA_West
West
true
Male
54.5
District_hospital
Periurban
3
Low
Private
true
false
true
true
false
false
MD_PAT_00058
SSA_West
West
true
Female
54.9
Tertiary_urban
Urban
6.8
High
None
true
true
true
true
true
true
MD_PAT_00059
SSA_West
West
true
Female
47.5
District_hospital
Urban
4.4
High
None
false
false
true
false
true
false
MD_PAT_00060
SSA_West
West
true
Female
59.3
Regional_hospital
Urban
0.5
Low
None
true
true
true
true
false
false
MD_PAT_00061
SSA_West
West
true
Female
39.5
Tertiary_urban
Urban
8.2
Middle
None
true
true
true
true
true
true
MD_PAT_00062
SSA_West
West
true
Female
56.2
District_hospital
Urban
5.7
Low
None
false
false
true
true
false
false
MD_PAT_00063
SSA_West
West
true
Female
35.7
District_hospital
Periurban
12.2
Middle
None
false
false
true
true
true
false
MD_PAT_00064
SSA_West
West
true
Female
58.9
Tertiary_urban
Periurban
18.4
Middle
None
true
true
true
true
true
false
MD_PAT_00065
SSA_West
West
true
Female
38.3
Tertiary_urban
Urban
1.3
Low
None
true
true
true
true
true
true
MD_PAT_00066
SSA_West
West
true
Female
53.3
District_hospital
Rural
73.2
Middle
None
true
true
true
true
false
false
MD_PAT_00067
SSA_West
West
true
Female
30.3
Tertiary_urban
Periurban
14.1
Low
None
true
true
true
true
true
true
MD_PAT_00068
SSA_West
West
true
Female
64.8
Tertiary_urban
Rural
84.7
High
None
true
true
true
true
true
true
MD_PAT_00069
SSA_West
West
true
Female
50.5
Regional_hospital
Periurban
11.5
Middle
None
true
true
true
true
true
true
MD_PAT_00070
SSA_West
West
true
Female
55.9
District_hospital
Periurban
39.8
High
National_insurance
false
false
false
false
false
false
MD_PAT_00071
SSA_West
West
true
Female
61.4
Regional_hospital
Periurban
26.6
Low
None
true
false
true
true
true
true
MD_PAT_00072
SSA_West
West
true
Female
52.6
Regional_hospital
Rural
69.1
Middle
None
true
false
true
true
true
true
MD_PAT_00073
SSA_West
West
true
Female
58.1
Regional_hospital
Rural
52.4
Low
Private
true
true
true
false
false
false
MD_PAT_00074
SSA_West
West
true
Female
57.7
Tertiary_urban
Urban
3.7
High
National_insurance
false
false
true
true
true
true
MD_PAT_00075
SSA_West
West
true
Male
49.3
District_hospital
Periurban
15.4
Low
None
false
false
true
true
false
false
MD_PAT_00076
SSA_West
West
true
Female
57.7
District_hospital
Rural
2.7
Middle
None
false
false
true
true
false
false
MD_PAT_00077
SSA_West
West
true
Male
46
Regional_hospital
Urban
2.5
Low
None
true
true
false
false
true
true
MD_PAT_00078
SSA_West
West
true
Female
69.6
District_hospital
Urban
8.8
Middle
None
true
true
false
false
false
false
MD_PAT_00079
SSA_West
West
true
Female
56.7
District_hospital
Rural
40.8
Low
None
true
false
true
true
false
false
MD_PAT_00080
SSA_West
West
true
Female
67.6
Regional_hospital
Urban
6.2
Middle
National_insurance
true
true
true
true
true
true
MD_PAT_00081
SSA_West
West
true
Female
53.5
Tertiary_urban
Urban
4.9
Middle
None
true
true
true
true
true
true
MD_PAT_00082
SSA_West
West
true
Female
56
District_hospital
Urban
10.3
Middle
None
false
false
false
false
true
false
MD_PAT_00083
SSA_West
West
true
Female
55.1
Regional_hospital
Urban
3.1
Middle
National_insurance
true
true
true
true
true
true
MD_PAT_00084
SSA_West
West
true
Male
53.7
Regional_hospital
Rural
36.3
Middle
National_insurance
true
true
true
true
true
false
MD_PAT_00085
SSA_West
West
true
Female
57.3
Tertiary_urban
Rural
45.2
Low
National_insurance
true
true
true
true
true
true
MD_PAT_00086
SSA_West
West
true
Female
47.9
District_hospital
Urban
8.2
Low
National_insurance
true
true
false
false
false
false
MD_PAT_00087
SSA_West
West
true
Female
44.7
Regional_hospital
Rural
67.9
High
None
true
true
false
false
false
false
MD_PAT_00088
SSA_West
West
true
Female
58
Regional_hospital
Periurban
26.2
Middle
None
true
true
true
true
true
false
MD_PAT_00089
SSA_West
West
true
Female
51.4
Tertiary_urban
Rural
57.3
Middle
None
true
true
true
true
true
true
MD_PAT_00090
SSA_West
West
true
Female
43.5
Regional_hospital
Urban
1.9
Middle
None
true
true
true
true
true
true
MD_PAT_00091
SSA_West
West
true
Female
45.4
District_hospital
Periurban
10.7
Middle
None
true
false
true
true
false
false
MD_PAT_00092
SSA_West
West
true
Female
54.7
Regional_hospital
Urban
13.2
Low
Private
true
true
true
true
true
true
MD_PAT_00093
SSA_West
West
true
Female
59.4
Regional_hospital
Periurban
14.1
Low
None
true
true
true
true
true
true
MD_PAT_00094
SSA_West
West
true
Female
48.9
District_hospital
Urban
0.6
Middle
National_insurance
true
true
true
true
false
false
MD_PAT_00095
SSA_West
West
true
Male
52.5
District_hospital
Urban
3.2
Middle
None
true
true
true
true
true
true
MD_PAT_00096
SSA_West
West
true
Female
45.9
Regional_hospital
Rural
77.9
Middle
None
true
true
true
true
false
false
MD_PAT_00097
SSA_West
West
true
Female
51.5
Tertiary_urban
Periurban
23.5
Low
National_insurance
true
true
true
true
true
true
MD_PAT_00098
SSA_West
West
true
Female
72.6
Tertiary_urban
Rural
87.9
Low
None
true
true
true
true
true
true
MD_PAT_00099
SSA_West
West
true
Female
61.7
District_hospital
Periurban
51.3
High
None
true
true
false
false
true
false
MD_PAT_00100
SSA_West
West
true
Female
49.6
District_hospital
Urban
6.9
Low
None
false
false
true
true
true
true
End of preview. Expand in Data Studio

SSA Breast Missing Data Patterns (Synthetic)

Dataset summary

This module provides a synthetic missing-data sandbox for oncology care in African healthcare contexts, focusing on:

  • Realistic loss-to-follow-up (LTFU) and retention patterns over 0–24 months.
  • Incomplete diagnostic and laboratory test results (ordered vs completed vs available in records).
  • Non-random missingness driven by facility type, distance, socioeconomic status (SES), and insurance.

The dataset is anchored in published evidence from:

  • The ABC-DO sub-Saharan African breast cancer cohort (low LTFU with active tracing).
  • Meta-analyses of HIV ART retention (60–70% retained at 2–3 years in routine care).
  • Surveys of breast cancer pathology services and management (AORTIC, BMC Health Serv Res, JCO GO).
  • Real-world challenges in SSA breast cancer care (BMJ Open 2021).

All records are fully synthetic and intended for methods development and teaching on missing data and retention, not for inference on real facilities.

Cohort design

Sample size and populations

  • Total N (baseline patients): 6,000.
  • Populations:
    • SSA_West: 1,500
    • SSA_East: 1,500
    • SSA_Central: 1,000
    • SSA_Southern: 1,000
    • AAW (African American women): 1,000 (reference/high-resource context)

Key baseline variables

  • sex: predominantly Female (~96%), with a small proportion of Male to allow mixed-sex analyses.
  • age_years: 18–90 (mean ~52, SD ~10).
  • facility_type:
    • Tertiary_urban
    • Regional_hospital
    • District_hospital
  • urban_rural:
    • Urban, Periurban, Rural.
  • distance_km from facility:
    • Drawn from normal distributions by urban_rural (e.g., Urban mean ~5 km, Rural mean ~60 km).
  • ses (socioeconomic status): Low, Middle, High with higher Low fractions in SSA cohorts.
  • insurance_status: None, National_insurance, Private.

These variables drive missingness mechanisms (higher LTFU and test missingness with longer distance, low SES, and lack of insurance).

Follow-up and retention

Patients are scheduled for visits at months:

  • visit_month: [0, 3, 6, 9, 12, 18, 24].

Retention targets (probability of still in care at 12 and 24 months) vary by facility type, loosely anchored by ABC-DO and HIV ART literature:

  • Tertiary_urban: 12m β‰ˆ 0.85, 24m β‰ˆ 0.75.
  • Regional_hospital: 12m β‰ˆ 0.75, 24m β‰ˆ 0.60.
  • District_hospital: 12m β‰ˆ 0.65, 24m β‰ˆ 0.50.

In the generator, a per-interval dropout probability is derived from these targets. This dropout risk is then modulated by:

  • Distance: higher risk for patients living >75 km from the facility.
  • SES: higher risk for Low vs High SES.
  • Insurance: higher risk for None vs National_insurance or Private.

At each scheduled month, patients either:

  • Remain in care and have a visit record (visit_attended True/False).
  • Drop out (no further visits recorded).

Retention at 12 and 24 months is validated against the configuration.

Test ordering and result availability (missingness)

Baseline tests

For each patient at baseline, the following are simulated with facility-specific probabilities:

  • baseline_pathology_ordered
  • baseline_pathology_result_available (e.g., ER/PR/HER2 receptors)
  • baseline_cbc_ordered
  • baseline_cbc_result_available
  • baseline_imaging_ordered (staging imaging)
  • baseline_imaging_result_available

Approximate patterns by facility type:

  • Pathology receptors:

    • High ordering and completion in Tertiary_urban (~90%+ completed).
    • Lower completion in Regional_hospital (~65–70%).
    • Substantial missingness in District_hospital (~40–50% completed).
  • CBC and imaging:

    • More widely available, but still with gradients by facility and context.

Follow-up labs (CBC)

At each attended follow-up visit (months >0):

  • cbc_ordered is drawn from facility-specific probabilities.
  • cbc_result_available is drawn conditional on ordering and reflects:
    • Higher completion in tertiary centres.
    • Lower completion in district hospitals.

This yields visit-level missingness that depends on both visit attendance and facility/test capacity.

Non-random missingness

Missingness is deliberately not MCAR:

  • Baseline pathology results are more often missing in:
    • District_hospital and Regional_hospital than Tertiary_urban.
    • Low SES vs High SES.
  • Follow-up CBC results are more often missing among:
    • Patients with long travel distances.
    • Those without insurance.

The validation script checks for higher missingness in Low vs High SES for both baseline pathology and follow-up CBC.

Files and schema

Baseline table

Files:

  • missing_data_baseline.parquet
  • missing_data_baseline.csv

Columns (per patient):

  • Identifiers and demographics:
    • sample_id
    • population
    • region
    • is_SSA
    • sex
    • age_years
  • Access and facility characteristics:
    • facility_type
    • urban_rural
    • distance_km
    • ses
    • insurance_status
  • Baseline tests (ordered and result availability):
    • baseline_pathology_ordered
    • baseline_pathology_result_available
    • baseline_cbc_ordered
    • baseline_cbc_result_available
    • baseline_imaging_ordered
    • baseline_imaging_result_available

Visit-level table

Files:

  • missing_data_visits.parquet
  • missing_data_visits.csv

Columns (per scheduled time point while in care):

  • Identifiers and baseline covariates:
    • sample_id
    • population
    • facility_type
    • urban_rural
    • ses
    • insurance_status
    • distance_km
  • Visit information:
    • visit_month (0, 3, 6, 9, 12, 18, 24)
    • visit_attended (True/False)
  • Follow-up CBC:
    • cbc_ordered
    • cbc_result_available

Patients with early loss to follow-up have shorter visit histories, so the visit table is an unbalanced panel that mimics real program data.

Generation

The dataset is generated with:

  • missing_data_patterns/scripts/generate_missing_data.py

using configuration:

  • missing_data_patterns/configs/missing_data_config.yaml

and literature inventory:

  • missing_data_patterns/docs/LITERATURE_INVENTORY.csv

Key steps:

  1. Baseline cohort: populations, sex, age, facility type, urban/rural, distance, SES, insurance.
  2. Baseline tests: pathology receptors, CBC, and imaging, with ordering/completion probabilities by facility type.
  3. Visits and retention: scheduled visits from 0 to 24 months, with facility-specific dropout probabilities tuned to match retention targets and modified by distance/SES/insurance.
  4. Follow-up CBC: ordering and result availability for each attended visit, by facility type.

Validation

Validation is performed with:

  • missing_data_patterns/scripts/validate_missing_data.py

and summarized in:

  • missing_data_patterns/output/validation_report.md

Checks include:

  • C01–C02: Baseline sample size and population counts vs configuration.
  • C03: Retention at 12 and 24 months by facility vs configured targets.
  • C04: Baseline pathology receptor result availability vs expected rates.
  • C05: Follow-up CBC result availability vs expected rates for attended visits.
  • C06–C07: Non-random missingness by SES (Low vs High) for baseline pathology and follow-up CBC.
  • C08: Overall missingness in key baseline and visit variables.

Intended use

This dataset is intended for:

  • Developing and benchmarking missing-data methods (imputation, inverse probability weighting, joint models).
  • Exploring selection bias introduced by LTFU and incomplete tests.
  • Teaching about:
    • How health-system factors (facility, distance, SES, insurance) shape missing data.
    • Differences between MCAR, MAR, and MNAR mechanisms in realistic African oncology settings.

It is not intended for:

  • Estimating real-world retention or test completion at specific facilities.
  • Evaluating individual centres or countries.
  • Clinical decision-making.

Ethical considerations

  • All data are synthetic and derived from literature-informed parameter ranges.
  • Facility and population labels are generic and must not be interpreted as real institutions.
  • The goal is to enable more robust and equitable analyses under realistic data limitations in African healthcare settings.

License

  • License: CC BY-NC 4.0.
  • Free for non-commercial research, method development, and education with attribution.

Citation

If you use this dataset, please cite:

Electric Sheep Africa. "SSA Breast Missing Data Patterns (Retention & Incomplete Tests, Synthetic)." Hugging Face Datasets.

and relevant literature on retention and pathology services in sub-Saharan Africa (e.g., Foerster et al. 2020, Rosen & Fox 2007, Adesina et al. 2020, Joko-Fru et al. 2021).

Downloads last month
19

Collection including electricsheepafrica/ssa-breast-missing-data-patterns