feat:add get_raw_data.py
Browse files
ResNet-CIFAR10/Classification-normal/scripts/get_raw_data.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torchvision
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
def unpickle(file):
|
| 11 |
+
"""读取CIFAR-10数据文件"""
|
| 12 |
+
import pickle
|
| 13 |
+
with open(file, 'rb') as fo:
|
| 14 |
+
dict = pickle.load(fo, encoding='bytes')
|
| 15 |
+
return dict
|
| 16 |
+
|
| 17 |
+
def save_images_from_cifar10(dataset_path, save_dir):
|
| 18 |
+
"""从CIFAR-10数据集中保存图像
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
dataset_path: CIFAR-10数据集路径
|
| 22 |
+
save_dir: 图像保存路径
|
| 23 |
+
"""
|
| 24 |
+
# 创建保存目录
|
| 25 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
# 获取训练集数据
|
| 28 |
+
train_data = []
|
| 29 |
+
train_labels = []
|
| 30 |
+
|
| 31 |
+
# 读取训练数据
|
| 32 |
+
for i in range(1, 6):
|
| 33 |
+
batch_file = os.path.join(dataset_path, f'data_batch_{i}')
|
| 34 |
+
if os.path.exists(batch_file):
|
| 35 |
+
print(f"读取训练批次 {i}")
|
| 36 |
+
batch = unpickle(batch_file)
|
| 37 |
+
train_data.append(batch[b'data'])
|
| 38 |
+
train_labels.extend(batch[b'labels'])
|
| 39 |
+
|
| 40 |
+
# 合并所有训练数据
|
| 41 |
+
if train_data:
|
| 42 |
+
train_data = np.vstack(train_data)
|
| 43 |
+
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
| 44 |
+
|
| 45 |
+
# 读取测试数据
|
| 46 |
+
test_file = os.path.join(dataset_path, 'test_batch')
|
| 47 |
+
# if os.path.exists(test_file):
|
| 48 |
+
# print("读取测试数据")
|
| 49 |
+
# test_batch = unpickle(test_file)
|
| 50 |
+
# test_data = test_batch[b'data']
|
| 51 |
+
# test_labels = test_batch[b'labels']
|
| 52 |
+
# test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
|
| 53 |
+
# else:
|
| 54 |
+
test_data = []
|
| 55 |
+
test_labels = []
|
| 56 |
+
|
| 57 |
+
# 合并训练和测试数据
|
| 58 |
+
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
|
| 59 |
+
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
|
| 60 |
+
|
| 61 |
+
# 保存图像
|
| 62 |
+
print(f"保存 {len(all_data)} 张图像...")
|
| 63 |
+
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
|
| 64 |
+
img = Image.fromarray(img)
|
| 65 |
+
img.save(os.path.join(save_dir, f"{i+1}.png"))
|
| 66 |
+
|
| 67 |
+
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}")
|
| 68 |
+
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
# 设置路径
|
| 71 |
+
dataset_path = "../dataset/cifar-10-batches-py"
|
| 72 |
+
save_dir = "../dataset/raw_data"
|
| 73 |
+
|
| 74 |
+
# 检查数据集是否存在,如果不存在则下载
|
| 75 |
+
if not os.path.exists(dataset_path):
|
| 76 |
+
print("数据集不存在,正在下载...")
|
| 77 |
+
os.makedirs("../dataset", exist_ok=True)
|
| 78 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
| 79 |
+
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
|
| 80 |
+
|
| 81 |
+
# 保存图像
|
| 82 |
+
save_images_from_cifar10(dataset_path, save_dir)
|