Datasets:
Anonymous
commited on
Upload example.ipynb
Browse files- example.ipynb +187 -0
example.ipynb
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# 🧠 NOVA Benchmark: Extreme Stress-Test for Out-of-Distribution Detection in Brain MRI\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Welcome to the NOVA dataset — a carefully curated, evaluation-only benchmark designed to push the limits of machine learning models in real-world clinical scenarios. With over **900 brain MRI scans**, **281 rare pathologies**, and **rich clinical metadata**, NOVA goes beyond traditional anomaly detection.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"This notebook walks you through how to:\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"- Load the NOVA dataset directly from Hugging Face 🤗\n",
|
| 14 |
+
"- Access images, captions, and diagnostic metadata\n",
|
| 15 |
+
"- Visualize expert-annotated bounding boxes (gold standard and raters)\n",
|
| 16 |
+
"- Explore one of the most challenging testbeds for generalization and reasoning under uncertainty\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"> ⚠️ This benchmark is intended **only for evaluation**. No training should be performed on NOVA.\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"📘 For more details, visit the [dataset page on Hugging Face](https://huggingface.co/datasets/Ano-2090/Nova).\n"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": null,
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"import matplotlib.pyplot as plt\n",
|
| 30 |
+
"import matplotlib.patches as patches\n",
|
| 31 |
+
"from datasets import load_dataset\n",
|
| 32 |
+
"import random"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "markdown",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"source": [
|
| 39 |
+
"### Load dataset\n"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": null,
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"ds = load_dataset(\"Ano-2090/Nova\")"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "markdown",
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"source": [
|
| 55 |
+
"### Select a random example\n"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": null,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"example = random.choice(ds[\"test\"])\n",
|
| 65 |
+
"image = example[\"image\"]"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "markdown",
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"source": [
|
| 72 |
+
"### Create figure and display image\n"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": null,
|
| 78 |
+
"metadata": {},
|
| 79 |
+
"outputs": [],
|
| 80 |
+
"source": [
|
| 81 |
+
"fig, ax = plt.subplots(1, figsize=(8, 8))\n",
|
| 82 |
+
"ax.imshow(image)"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "markdown",
|
| 87 |
+
"metadata": {},
|
| 88 |
+
"source": [
|
| 89 |
+
"### Plot gold standard bounding boxes (gold)\n"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"cell_type": "code",
|
| 94 |
+
"execution_count": null,
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"outputs": [],
|
| 97 |
+
"source": [
|
| 98 |
+
"bbox = example[\"bbox_gold\"]\n",
|
| 99 |
+
"for x, y, w, h in zip(bbox[\"x\"], bbox[\"y\"], bbox[\"width\"], bbox[\"height\"]):\n",
|
| 100 |
+
" rect = patches.Rectangle((x, y), w, h, linewidth=2, edgecolor=\"gold\", facecolor=\"none\")\n",
|
| 101 |
+
" ax.add_patch(rect)"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "markdown",
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"source": [
|
| 108 |
+
"### Plot rater bounding boxes (turquoise, salmon) with labels\n"
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "code",
|
| 113 |
+
"execution_count": null,
|
| 114 |
+
"metadata": {},
|
| 115 |
+
"outputs": [],
|
| 116 |
+
"source": [
|
| 117 |
+
"colors = ['#40E0D0', '#FA8072']\n",
|
| 118 |
+
"raters = example[\"bbox_raters\"]\n",
|
| 119 |
+
"if raters:\n",
|
| 120 |
+
" for i in range(len(raters[\"x\"])):\n",
|
| 121 |
+
" rater = raters[\"rater\"][i]\n",
|
| 122 |
+
" x = raters[\"x\"][i]\n",
|
| 123 |
+
" y = raters[\"y\"][i]\n",
|
| 124 |
+
" w = raters[\"width\"][i]\n",
|
| 125 |
+
" h = raters[\"height\"][i]\n",
|
| 126 |
+
" rect = patches.Rectangle((x, y), w, h, linewidth=1.5, edgecolor=colors[i], facecolor=\"none\", linestyle=\"--\")\n",
|
| 127 |
+
" ax.add_patch(rect)\n",
|
| 128 |
+
" if i == 0:\n",
|
| 129 |
+
" ax.text(x, y - 5, rater, color=colors[i], fontsize=8, weight=\"bold\", va=\"bottom\")\n",
|
| 130 |
+
" else: \n",
|
| 131 |
+
" ax.text(x + w/2, y + h + 15, rater, color=colors[i], fontsize=8, weight=\"bold\", va=\"bottom\")"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "markdown",
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"source": [
|
| 138 |
+
"### Visualize example\n"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": null,
|
| 144 |
+
"metadata": {},
|
| 145 |
+
"outputs": [],
|
| 146 |
+
"source": [
|
| 147 |
+
"plt.title(f'{example[\"filename\"]} — {example[\"final_diagnosis\"]}', fontsize=12)\n",
|
| 148 |
+
"plt.axis(\"off\")\n",
|
| 149 |
+
"plt.tight_layout()\n",
|
| 150 |
+
"plt.show()"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "markdown",
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"source": [
|
| 157 |
+
"### Print other metadata \n"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"print('*-------------------------------------------------------*')\n",
|
| 167 |
+
"print('*-------------------------------------------------------*')\n",
|
| 168 |
+
"print('caption:', example[\"caption\"])\n",
|
| 169 |
+
"print('*-------------------------------------------------------*')\n",
|
| 170 |
+
"print('clinical history:', example[\"clinical_history\"])\n",
|
| 171 |
+
"print('*-------------------------------------------------------*')\n",
|
| 172 |
+
"print('differential diagnosis:', example[\"differential_diagnosis\"])\n",
|
| 173 |
+
"print('*-------------------------------------------------------*')\n",
|
| 174 |
+
"print('final diagnosis:', example[\"final_diagnosis\"])\n",
|
| 175 |
+
"print('*-------------------------------------------------------*')\n",
|
| 176 |
+
"print('*-------------------------------------------------------*')"
|
| 177 |
+
]
|
| 178 |
+
}
|
| 179 |
+
],
|
| 180 |
+
"metadata": {
|
| 181 |
+
"language_info": {
|
| 182 |
+
"name": "python"
|
| 183 |
+
}
|
| 184 |
+
},
|
| 185 |
+
"nbformat": 4,
|
| 186 |
+
"nbformat_minor": 2
|
| 187 |
+
}
|