import io import torch import numpy as np from datasets import load_dataset from torch.utils.data import Dataset, DataLoader # ================================================================== # 1. Core Decoding Function (Handles the binary packing) # ================================================================== def unpack_event_data(item, use_io=True): """ Decodes the custom binary format: Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits) """ if use_io: with io.BytesIO(item['data']) as f: raw_data = np.load(f) else: raw_data = np.load(item) header_size = 4 * 2 # Parse Header (First 8 bytes for 4 uint16 shape values) shape_header = raw_data[:header_size].view(np.uint16) original_shape = tuple(shape_header) # Returns (T, C, H, W) packed_body = raw_data[header_size:] # Parse Body & Bit-unpacking unpacked = np.unpackbits(packed_body) num_elements = np.prod(original_shape) # Extract valid bits (Handle padding) event_flat = unpacked[:num_elements] event_data = event_flat.reshape(original_shape).astype(np.float32).copy() return torch.from_numpy(event_data) # ================================================================== # 2. Dataset Wrapper # ================================================================== class I2E_Dataset(Dataset): def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None): print(f"🚀 Loading {config_name} [{split}] from Hugging Face...") self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False) self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.ds) def __getitem__(self, idx): item = self.ds[idx] event = unpack_event_data(item) label = item['label'] if self.transform: event = self.transform(event) if self.target_transform: label = self.target_transform(label) return event, label # ================================================================== # 3. Run Example # ================================================================== if __name__ == "__main__": import os os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions DATASET_NAME = 'I2E-CIFAR10' # Choose your config: 'I2E-CIFAR10', 'I2E-ImageNet', etc. MODEL_PATH = 'Your cache path here' # e.g., './hf_datasets_cache/' train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train') val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation') train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True) val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True) events, labels = next(iter(train_loader)) print(f"✅ Loaded Batch Shape: {events.shape}") # Expect: [32, T, 2, H, W] print(f"✅ Labels: {labels}")