File size: 3,186 Bytes
ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 ac9c669 d763116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import io
import torch
import numpy as np
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
# ==================================================================
# 1. Core Decoding Function (Handles the binary packing)
# ==================================================================
def unpack_event_data(item, use_io=True):
"""
Decodes the custom binary format:
Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits)
"""
if use_io:
with io.BytesIO(item['data']) as f:
raw_data = np.load(f)
else:
raw_data = np.load(item)
header_size = 4 * 2 # Parse Header (First 8 bytes for 4 uint16 shape values)
shape_header = raw_data[:header_size].view(np.uint16)
original_shape = tuple(shape_header) # Returns (T, C, H, W)
packed_body = raw_data[header_size:] # Parse Body & Bit-unpacking
unpacked = np.unpackbits(packed_body)
num_elements = np.prod(original_shape) # Extract valid bits (Handle padding)
event_flat = unpacked[:num_elements]
event_data = event_flat.reshape(original_shape).astype(np.float32).copy()
return torch.from_numpy(event_data)
# ==================================================================
# 2. Dataset Wrapper
# ==================================================================
class I2E_Dataset(Dataset):
def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None):
print(f"🚀 Loading {config_name} [{split}] from Hugging Face...")
self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False)
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.ds)
def __getitem__(self, idx):
item = self.ds[idx]
event = unpack_event_data(item)
label = item['label']
if self.transform:
event = self.transform(event)
if self.target_transform:
label = self.target_transform(label)
return event, label
# ==================================================================
# 3. Run Example
# ==================================================================
if __name__ == "__main__":
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions
DATASET_NAME = 'I2E-CIFAR10' # Choose your config: 'I2E-CIFAR10', 'I2E-ImageNet', etc.
MODEL_PATH = 'Your cache path here' # e.g., './hf_datasets_cache/'
train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train')
val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation')
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True)
events, labels = next(iter(train_loader))
print(f"✅ Loaded Batch Shape: {events.shape}") # Expect: [32, T, 2, H, W]
print(f"✅ Labels: {labels}") |