import yaml import argparse import torch import torchvision from PIL import Image import logging import sys # --- Diffusers and Transformers Imports --- from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, HunyuanVideoTransformer3DModel, FlowMatchEulerDiscreteScheduler from diffusers.utils import load_image from transformers import CLIPVisionModel # --- Low-pass Pipelines --- from pipeline_wan_image2video_lowpass import WanImageToVideoPipeline from pipeline_cogvideox_image2video_lowpass import CogVideoXImageToVideoPipeline from pipeline_hunyuan_video_image2video_lowpass import HunyuanVideoImageToVideoPipeline from lp_utils import get_hunyuan_video_size from diffusers.utils import export_to_video # --- Basic Logging Setup --- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', stream=sys.stdout) logger = logging.getLogger(__name__) def main(args): # 1. Configuration IMAGE_PATH = args.image_path PROMPT = args.prompt OUTPUT_PATH = args.output_path MODEL_CACHE_DIR = args.model_cache_dir with open(args.config, 'r') as f: config = yaml.safe_load(f) model_path = config['model']['path'] model_dtype_str = config['model']['dtype'] model_dtype = getattr(torch, model_dtype_str) device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {device}") # 2. Pipeline preparation if "Wan" in model_path: image_encoder = CLIPVisionModel.from_pretrained(model_path, subfolder="image_encoder", torch_dtype=torch.float32, cache_dir=MODEL_CACHE_DIR ) vae = AutoencoderKLWan.from_pretrained(model_path, subfolder="vae", torch_dtype=torch.float32, cache_dir=MODEL_CACHE_DIR ) pipe = WanImageToVideoPipeline.from_pretrained(model_path, vae=vae, image_encoder=image_encoder, torch_dtype=model_dtype, cache_dir=MODEL_CACHE_DIR ) # Recommended setup (See https://github.com/huggingface/diffusers/blob/3c8b67b3711b668a6e7867e08b54280e51454eb5/src/diffusers/pipelines/wan/pipeline_wan.py#L58C13-L58C23) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=3.0 if config['generation']['height'] == '480' else 5.0) elif "CogVideoX" in model_path: pipe = CogVideoXImageToVideoPipeline.from_pretrained( model_path, torch_dtype=model_dtype, cache_dir=MODEL_CACHE_DIR ) elif "HunyuanVideo" in model_path: transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_path, subfolder="transformer", torch_dtype=torch.bfloat16, cache_dir=MODEL_CACHE_DIR ) pipe = HunyuanVideoImageToVideoPipeline.from_pretrained( model_path, transformer=transformer, torch_dtype=torch.float16, cache_dir=MODEL_CACHE_DIR ) pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( pipe.scheduler.config, flow_shift= config['model']['flow_shift'], invert_sigmas = config['model']['flow_reverse'] ) pipe.to(device) logger.info("Pipeline loaded successfully.") # 3. Prepare inputs input_image = load_image(Image.open(IMAGE_PATH)) generator = torch.Generator(device=device).manual_seed(42) pipe_kwargs = { "image": input_image, "prompt": PROMPT, "generator": generator, } params_from_config = {**config.get('generation', {}), **config.get('alg', {})} for key, value in params_from_config.items(): if value is not None: pipe_kwargs[key] = value logger.info("Starting video generation...") log_subset = {k: v for k, v in pipe_kwargs.items() if k not in ['image', 'generator']} logger.info(f"Pipeline arguments: {log_subset}") if "HunyuanVideo" in model_path: pipe_kwargs["height"], pipe_kwargs["width"] = get_hunyuan_video_size(config['video']['resolution'], input_image) # 4. Generate video video_output = pipe(**pipe_kwargs) video_frames = video_output.frames[0] # Output is a list containing a list of PIL Images logger.info(f"Video generation complete. Received {len(video_frames)} frames.") # # 5. Save video # video_tensors = [torchvision.transforms.functional.to_tensor(frame) for frame in video_frames] # video_tensor = torch.stack(video_tensors) # Shape: (T, C, H, W) # video_tensor = video_tensor.permute(0, 2, 3, 1) # Shape: (T, H, W, C) for write_video # video_tensor = (video_tensor * 255).clamp(0, 255).to(torch.uint8).cpu() # logger.info(f"Saving video to: {OUTPUT_PATH}") # torchvision.io.write_video( # OUTPUT_PATH, # video_tensor, # fps=config['video']['fps'], # video_codec='h264', # options={'crf': '18', 'preset': 'slow'} # ) export_to_video(video_frames, OUTPUT_PATH, fps=config['video']['fps']) logger.info("Video saved successfully. Run complete.") if __name__ == '__main__': parser = argparse.ArgumentParser(description="Arguments") parser.add_argument("--config", type=str, default="./configs/hunyuan_video_alg.yaml") parser.add_argument("--image_path", type=str, default="./assets/a red double decker bus driving down a street.jpg") parser.add_argument("--prompt", type=str, default="a red double decker bus driving down a street") parser.add_argument("--output_path", type=str, default="output.mp4") parser.add_argument("--model_cache_dir", type=str, default=None) args = parser.parse_args() main(args)