{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Data Process Pipeline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data Process Commands" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "# TODO: change to your own project path!!!\n", "OPEN_SORA_HOME = \"/path/to/Open-Sora/\"\n", "\n", "\n", "def convert_dataset_cmd(input_dir, output_file, datatype=\"video\"):\n", " commands = []\n", " commands.append(f'echo \"Converting {input_dir} to {output_file}\"')\n", " output_dir = os.path.dirname(output_file)\n", "\n", " commands.append(f\"mkdir -p {output_dir}\")\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(f\"python -m tools.datasets.convert {datatype} {input_dir} --output {output_file}\")\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_video_info(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_info{ext}\"\n", " output_format = ext[1:]\n", "\n", " commands.append(f'echo \"Getting info of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(\n", " f\"python -m tools.datasets.datautil {input_file} --output {output_file} --format {output_format} --info --fmin 1\"\n", " )\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_video_info_torchvision(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_info{ext}\"\n", " output_format = ext[1:]\n", "\n", " commands.append(f'echo \"Getting info of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(\n", " f\"python -m tools.datasets.datautil {input_file} --output {output_file} --format {output_format} --video-info --fmin 1\"\n", " )\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_caption_llava7b_video(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_caption{ext}\"\n", " output_format = ext[1:]\n", "\n", " commands.append(f'echo \"Getting info of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(f\"conda activate llava2\")\n", " commands.append(\n", " f\"torchrun --nproc_per_node 8 --standalone -m tools.caption.caption_llava {input_file} --dp-size 8 --tp-size 1 --model-path liuhaotian/llava-v1.6-mistral-7b --prompt video\"\n", " )\n", " commands.append(f\"conda activate opensora\")\n", " commands.append(\n", " f\"python -m tools.datasets.datautil {base}_caption_part*{ext} --output {output_file} --format {output_format} --intersection {input_file} --clean-caption --refine-llm-caption --remove-empty-caption\"\n", " )\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_caption_load(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_caption{ext}\"\n", " output_format = ext[1:]\n", "\n", " commands.append(f'echo \"Getting caption of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(\n", " f\"python -m tools.datasets.datautil {input_file} --output {output_file} --format {output_format} --load-caption json --remove-empty-caption --clean-caption\"\n", " )\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_aesthetic_score(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_aes{ext}\"\n", " output_format = ext[1:]\n", "\n", " commands.append(f'echo \"Getting aesthetic score of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(f\"torchrun --standalone --nproc_per_node 8 -m tools.scoring.aesthetic.inference {input_file}\")\n", " commands.append(\n", " f\"python -m tools.datasets.datautil {base}_aes_part*{ext} --output {output_file} --format {output_format} --sort aes\"\n", " )\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_flow_score(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_flow{ext}\"\n", "\n", " commands.append(f'echo \"Getting flow score of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(f\"torchrun --standalone --nproc_per_node 8 -m tools.scoring.optical_flow.inference {input_file}\")\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_ocr(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_match{ext}\"\n", "\n", " commands.append(f'echo \"Getting match score of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(f\"torchrun --standalone --nproc_per_node 8 -m tools.scoring.ocr.inference {input_file}\")\n", " return \" && \".join(commands), output_file\n", "\n", " \n", "def get_match_score(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_match{ext}\"\n", "\n", " commands.append(f'echo \"Getting match score of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(f\"torchrun --standalone --nproc_per_node 8 -m tools.scoring.matching.inference {input_file}\")\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_cmotion_score(input_file):\n", " commands = []\n", " base, ext = os.path.splitext(input_file)\n", " output_file = f\"{base}_cmotion{ext}\"\n", "\n", " commands.append(f'echo \"Getting cmotion score of {input_file} to {output_file}\"')\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append(f\"python -m tools.caption.camera_motion_detect {input_file}\")\n", " return \" && \".join(commands), output_file\n", "\n", "\n", "def get_commands(job_list):\n", " commands = []\n", " output_file = None\n", " for job in job_list:\n", " cmd = job.pop(\"cmd\")\n", " if output_file is None:\n", " command, output_file = cmd(**job)\n", " commands.append(command)\n", " else:\n", " job[\"input_file\"] = output_file\n", " command, output_file = cmd(**job)\n", " commands.append(command)\n", " commands.append(f'echo \"All Done!\"')\n", " return \" && \".join(commands), output_file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Remote Launch via Paramiko\n", "\n", "First, add hosts to `~/.ssh/config`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import paramiko\n", "\n", "HOSTS = [\"host-0\", \"host-1\", \"host-2\", \"host-3\", \"host-4\", \"host-5\", \"host-6\", \"host-7\"]\n", "\n", "# load from ~/.ssh/config\n", "ssh_config = paramiko.SSHConfig()\n", "user_config_file = os.path.expanduser(\"~/.ssh/config\")\n", "if os.path.exists(user_config_file):\n", " with open(user_config_file) as f:\n", " ssh_config.parse(f)\n", "\n", "\n", "def get_ssh_config(hostname):\n", " # get the configuration for the host\n", " user_config = ssh_config.lookup(hostname)\n", " cfg = {\n", " \"hostname\": user_config[\"hostname\"],\n", " \"username\": user_config[\"user\"],\n", " \"port\": int(user_config[\"port\"]),\n", " \"key_filename\": user_config[\"identityfile\"],\n", " }\n", " return cfg\n", "\n", "\n", "def connect(hostname):\n", " cfg = get_ssh_config(hostname)\n", " # connect\n", " client = paramiko.SSHClient()\n", " client.set_missing_host_key_policy(paramiko.AutoAddPolicy())\n", " client.connect(**cfg)\n", " return client\n", "\n", "\n", "def run_command(command, hostname, nohup=False, log_file=None, sleep=None):\n", " client = connect(hostname)\n", " print(\"HOST:\", hostname)\n", " if sleep:\n", " command = f\"sleep {sleep}; {command}\"\n", " command = f\"bash -ic '{command}'\"\n", " if log_file:\n", " command = f\"{command} >> {log_file} 2>&1\"\n", " if nohup:\n", " command = f\"nohup {command} &\"\n", " print(\"COMMAND:\", command)\n", " stdin, stdout, stderr = client.exec_command(command, get_pty=False)\n", "\n", " stdout_str = stdout.read().decode()\n", " stderr_str = stderr.read().decode()\n", " if stdout_str:\n", " print(\"==== STDOUT ====\\n\", stdout_str)\n", " if stderr_str:\n", " print(\"==== STDERR ====\\n\", stderr_str)\n", "\n", " client.close()\n", "\n", "\n", "def run_command_all_hosts(command, hosts=HOSTS):\n", " for hostname in hosts:\n", " run_command(command, hostname)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here are tools to examine machine's status." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def nvidia_smi(host):\n", " if host:\n", " run_command(\"nvidia-smi\", host)\n", " else:\n", " run_command_all_hosts(\"nvidia-smi\")\n", "\n", "\n", "def nvitop(host=None):\n", " if host:\n", " run_command(f\"/home/user/.local/bin/nvitop -1\", host)\n", " else:\n", " run_command_all_hosts(\"/home/user/.local/bin/nvitop -1\")\n", "\n", "\n", "def ps(host=None, interest=\"python|sleep|torchrun|colossal\", all=True):\n", " cmd = \"ps aux\" if all else \"ps ux\"\n", " if host:\n", " if interest is None:\n", " run_command(f\"{cmd} | cat\", host)\n", " else:\n", " run_command(f'{cmd} | cat | grep --color=never -E \"{interest}\"', host)\n", " else:\n", " if interest is None:\n", " run_command_all_hosts(f\"{cmd} | cat\")\n", " else:\n", " run_command_all_hosts(f'{cmd} | cat | grep --color=never -E \"{interest}\"')\n", "\n", "\n", "def kill(pid, host):\n", " run_command(f\"kill -KILL {pid}\", host)\n", "\n", "\n", "def pkill(interest, host):\n", " run_command(f'pkill -9 -f \"{interest}\"', host)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example\n", "\n", "Remote launch via paramiko." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sleep = None\n", "run_command(cmd, host, log_file=log_file, nohup=True, sleep=sleep)\n", "ps(host)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using following commands to monitor the status of the jobs." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ps()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nvitop(host)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "kill(, host)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Training" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def colossal_run(data_path, load_path=None):\n", " commands = []\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " command = f\"colossalai run --nproc_per_node 8 --hostfile hostfile scripts/train.py configs/opensora-v1-1/train/video.py --wandb True --data-path {data_path}\"\n", " if load_path:\n", " command = f\"{command} --load-path {load_path}\"\n", " commands.append(command)\n", " cmd = \" && \".join(commands)\n", " return cmd\n", "\n", "\n", "def kill_all():\n", " commands = []\n", " commands.append(f\"cd {OPEN_SORA_HOME}\")\n", " commands.append('cat hostfile | xargs -I \"{}\" ssh \"{}\" pkill -9 python')\n", " cmd = \" && \".join(commands)\n", " return cmd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Examples" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "host = \"host-0\"\n", "log_file = os.path.join(OPEN_SORA_HOME, \"logs/train.log\")\n", "data_path = \"/path/to/meta.csv\"\n", "cmd = colossal_run(data_path)\n", "print(cmd)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run_command(cmd, host, log_file=log_file, nohup=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cmd = kill_all()\n", "run_command(cmd, host)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 4 }