{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Inference for OpenSora" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define global variables. You should change the following variables according to your setting." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# global variables\n", "ROOT = \"..\"\n", "cfg_path = f\"{ROOT}/configs/opensora-v1-2/inference/sample.py\"\n", "ckpt_path = \"/home/lishenggui/projects/sora/Open-Sora-dev/outputs/207-STDiT3-XL-2/epoch0-global_step9000/\"\n", "vae_path = f\"{ROOT}/pretrained_models/vae-pipeline\"\n", "save_dir = f\"{ROOT}/samples/samples_notebook/\"\n", "device = \"cuda:0\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Import necessary libraries and load the models." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "from pprint import pformat\n", "\n", "import colossalai\n", "import torch\n", "import torch.distributed as dist\n", "from colossalai.cluster import DistCoordinator\n", "from mmengine.runner import set_random_seed\n", "from tqdm.notebook import tqdm\n", "\n", "from opensora.acceleration.parallel_states import set_sequence_parallel_group\n", "from opensora.datasets import save_sample, is_img\n", "from opensora.datasets.aspect import get_image_size, get_num_frames\n", "from opensora.models.text_encoder.t5 import text_preprocessing\n", "from opensora.registry import MODELS, SCHEDULERS, build_module\n", "from opensora.utils.config_utils import read_config\n", "from opensora.utils.inference_utils import (\n", " append_generated,\n", " apply_mask_strategy,\n", " collect_references_batch,\n", " extract_json_from_prompts,\n", " extract_prompts_loop,\n", " get_save_path_name,\n", " load_prompts,\n", " prepare_multi_resolution_info,\n", ")\n", "from opensora.utils.misc import all_exists, create_logger, is_distributed, is_main_process, to_torch_dtype" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "torch.set_grad_enabled(False)\n", "\n", "# == parse configs ==\n", "cfg = read_config(cfg_path)\n", "cfg.model.from_pretrained = ckpt_path\n", "cfg.vae.from_pretrained = vae_path\n", "\n", "# == device and dtype ==\n", "cfg_dtype = cfg.get(\"dtype\", \"fp32\")\n", "assert cfg_dtype in [\"fp16\", \"bf16\", \"fp32\"], f\"Unknown mixed precision {cfg_dtype}\"\n", "dtype = to_torch_dtype(cfg.get(\"dtype\", \"bf16\"))\n", "torch.backends.cuda.matmul.allow_tf32 = True\n", "torch.backends.cudnn.allow_tf32 = True\n", "\n", "set_random_seed(seed=cfg.get(\"seed\", 1024))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# == build text-encoder and vae ==\n", "text_encoder = build_module(cfg.text_encoder, MODELS, device=device)\n", "vae = build_module(cfg.vae, MODELS).to(device, dtype).eval()\n", "\n", "# == build diffusion model ==\n", "input_size = (None, None, None)\n", "latent_size = vae.get_latent_size(input_size)\n", "model = (\n", " build_module(\n", " cfg.model,\n", " MODELS,\n", " input_size=latent_size,\n", " in_channels=vae.out_channels,\n", " caption_channels=text_encoder.output_dim,\n", " model_max_length=text_encoder.model_max_length,\n", " )\n", " .to(device, dtype)\n", " .eval()\n", ")\n", "text_encoder.y_embedder = model.y_embedder # HACK: for classifier-free guidance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define inference function." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "start_idx = 0\n", "multi_resolution = cfg.get(\"multi_resolution\", None)\n", "batch_size = cfg.get(\"batch_size\", 1)\n", "\n", "\n", "def inference(\n", " prompts=cfg.get(\"prompt\", None),\n", " image_size=None,\n", " num_frames=None,\n", " resolution=None,\n", " aspect_ratio=None,\n", " mask_strategy=None,\n", " reference_path=None,\n", " num_sampling_steps=None,\n", " cfg_scale=None,\n", " seed=None,\n", " fps=cfg.fps,\n", " num_sample=cfg.get(\"num_sample\", 1),\n", " loop=cfg.get(\"loop\", 1),\n", " condition_frame_length=cfg.get(\"condition_frame_length\", 5),\n", " align=cfg.get(\"align\", None),\n", " sample_name=cfg.get(\"sample_name\", None),\n", " prompt_as_path=cfg.get(\"prompt_as_path\", False),\n", " disable_progress=False,\n", "):\n", " global start_idx\n", " os.makedirs(save_dir, exist_ok=True)\n", " if seed is not None:\n", " set_random_seed(seed=seed)\n", " if not isinstance(prompts, list):\n", " prompts = [prompts]\n", " if mask_strategy is None:\n", " mask_strategy = [\"\"] * len(prompts)\n", " if reference_path is None:\n", " reference_path = [\"\"] * len(prompts)\n", " save_fps = cfg.fps // cfg.get(\"frame_interval\", 1)\n", " if num_sampling_steps is not None:\n", " cfg.scheduler[\"num_sampling_steps\"] = num_sampling_steps\n", " if cfg_scale is not None:\n", " cfg.scheduler[\"scale\"] = cfg_scale\n", " scheduler = build_module(cfg.scheduler, SCHEDULERS)\n", " ret_path = []\n", "\n", " # == prepare video size ==\n", " if image_size is None:\n", " assert (\n", " resolution is not None and aspect_ratio is not None\n", " ), \"resolution and aspect_ratio must be provided if image_size is not provided\"\n", " image_size = get_image_size(resolution, aspect_ratio)\n", " num_frames = get_num_frames(num_frames)\n", " input_size = (num_frames, *image_size)\n", " latent_size = vae.get_latent_size(input_size)\n", "\n", " # == Iter over all samples ==\n", " for i in tqdm(range(0, len(prompts), batch_size), disable=disable_progress):\n", " # == prepare batch prompts ==\n", " batch_prompts = prompts[i : i + batch_size]\n", " ms = mask_strategy[i : i + batch_size]\n", " refs = reference_path[i : i + batch_size]\n", "\n", " batch_prompts, refs, ms = extract_json_from_prompts(batch_prompts, refs, ms)\n", " refs = collect_references_batch(refs, vae, image_size)\n", "\n", " # == multi-resolution info ==\n", " model_args = prepare_multi_resolution_info(\n", " multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype\n", " )\n", "\n", " # == Iter over number of sampling for one prompt ==\n", " for k in range(num_sample):\n", " # == prepare save paths ==\n", " save_paths = [\n", " get_save_path_name(\n", " save_dir,\n", " sample_name=sample_name,\n", " sample_idx=start_idx + idx,\n", " prompt=batch_prompts[idx],\n", " prompt_as_path=prompt_as_path,\n", " num_sample=num_sample,\n", " k=k,\n", " )\n", " for idx in range(len(batch_prompts))\n", " ]\n", "\n", " # NOTE: Skip if the sample already exists\n", " # This is useful for resuming sampling VBench\n", " if prompt_as_path and all_exists(save_paths):\n", " continue\n", "\n", " # == Iter over loop generation ==\n", " video_clips = []\n", " for loop_i in range(loop):\n", " batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)\n", " batch_prompts_cleaned = [text_preprocessing(prompt) for prompt in batch_prompts_loop]\n", "\n", " # == loop ==\n", " if loop_i > 0:\n", " refs, ms = append_generated(vae, video_clips[-1], refs, ms, loop_i, condition_frame_length)\n", "\n", " # == sampling ==\n", " z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)\n", " masks = apply_mask_strategy(z, refs, ms, loop_i, align=align)\n", " samples = scheduler.sample(\n", " model,\n", " text_encoder,\n", " z=z,\n", " prompts=batch_prompts_cleaned,\n", " device=device,\n", " additional_args=model_args,\n", " progress=False,\n", " mask=masks,\n", " )\n", " samples = vae.decode(samples.to(dtype), num_frames=num_frames)\n", " video_clips.append(samples)\n", "\n", " # == save samples ==\n", " if is_main_process():\n", " for idx, batch_prompt in enumerate(batch_prompts):\n", " save_path = save_paths[idx]\n", " video = [video_clips[i][idx] for i in range(loop)]\n", " for i in range(1, loop):\n", " video[i] = video[i][:, condition_frame_length:]\n", " video = torch.cat(video, dim=1)\n", " path = save_sample(\n", " video,\n", " fps=save_fps,\n", " save_path=save_path,\n", " verbose=False,\n", " )\n", " ret_path.append(path)\n", " start_idx += len(batch_prompts)\n", " return ret_path" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from IPython.display import Video, Image, display\n", "\n", "\n", "def display_results(paths):\n", " for path in paths:\n", " if is_img(path):\n", " display(Image(path))\n", " else:\n", " display(Video(path, embed=True))\n", "\n", "\n", "def reset_start_idx():\n", " global start_idx\n", " start_idx = 0\n", "\n", "\n", "ALL_ASPECT_RATIO = [\"1:1\", \"16:9\", \"9:16\", \"3:4\", \"4:3\", \"1:2\", \"2:1\"]\n", "\n", "\n", "def inference_all_aspects(prompts, resolution, num_frames, *args, **kwargs):\n", " paths = []\n", " for aspect_ratio in tqdm(ALL_ASPECT_RATIO):\n", " paths.extend(\n", " inference(\n", " prompts,\n", " resolution=resolution,\n", " num_frames=num_frames,\n", " aspect_ratio=aspect_ratio,\n", " disable_progress=True,\n", " *args,\n", " **kwargs\n", " )\n", " )\n", " return paths" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Inference for OpenSora" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sample code for inference for OpenSora." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "paths = inference(\n", " [\"a man.\", \"a woman\"],\n", " resolution=\"240p\",\n", " aspect_ratio=\"1:1\",\n", " num_frames=\"1x\",\n", " num_sampling_steps=30,\n", " cfg_scale=7.0,\n", ")\n", "display_results(paths)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sample all aspect ratios." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PROMPT = \"a boy.\"\n", "paths = inference_all_aspects(\n", " PROMPT,\n", " resolution=\"240p\",\n", " num_frames=\"1x\",\n", " num_sampling_steps=30,\n", " cfg_scale=7.0,\n", ")\n", "display_results(paths)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sample all resolution and length." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PROMPT = \"a boy.\"\n", "sample_cfg = {\n", " \"144p\": [1, \"1x\", \"2x\", \"4x\", \"8x\"],\n", " \"240p\": [1, \"1x\", \"2x\", \"4x\", \"8x\"],\n", " \"360p\": [1, \"1x\", \"2x\", \"4x\"],\n", " \"480p\": [1, \"1x\", \"2x\", \"4x\"],\n", " \"720p\": [1, \"1x\", \"2x\"],\n", "}\n", "all_paths = []\n", "for resolution, num_frames in sample_cfg.items():\n", " for num_frame in num_frames:\n", " print(f\"Resolution: {resolution}, Num Frames: {num_frame}\")\n", " paths = inference(\n", " PROMPT,\n", " resolution=resolution,\n", " num_frames=num_frame,\n", " aspect_ratio=\"9:16\",\n", " num_sampling_steps=30,\n", " cfg_scale=7.0,\n", " disable_progress=True,\n", " )\n", " display_results(paths)\n", " all_paths.extend(paths)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sample all resolution, length, and aspect ratios." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PROMPT = \"a boy.\"\n", "sample_cfg = {\n", " \"144p\": [1, \"1x\", \"2x\", \"4x\", \"8x\"],\n", " \"240p\": [1, \"1x\", \"2x\", \"4x\", \"8x\"],\n", " \"360p\": [1, \"1x\", \"2x\", \"4x\"],\n", " \"480p\": [1, \"1x\", \"2x\", \"4x\"],\n", " \"720p\": [1, \"1x\", \"2x\"],\n", "}\n", "all_paths = []\n", "for resolution, num_frames in sample_cfg.items():\n", " for num_frame in num_frames:\n", " paths = inference_all_aspects(\n", " PROMPT,\n", " resolution=resolution,\n", " num_frames=num_frames,\n", " num_sampling_steps=30,\n", " cfg_scale=7.0,\n", " )\n", " display_results(paths)\n", " all_paths.extend(paths)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "opensora", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }