# Evalution ## Human evaluation To conduct human evaluation, we need to generate various samples. We provide many prompts in `assets/texts`, and defined some test setting covering different resolution, duration and aspect ratio in `eval/sample.sh`. To facilitate the usage of multiple GPUs, we split sampling tasks into several parts. ```bash # image (1) bash eval/sample.sh /path/to/ckpt num_frames model_name_for_log -1 # video (2a 2b 2c ...) bash eval/sample.sh /path/to/ckpt num_frames model_name_for_log -2a # launch 8 jobs at once (you must read the script to understand the details) bash eval/human_eval/launch.sh /path/to/ckpt num_frames model_name_for_log ``` ## Rectified Flow Loss Evaluate the rectified flow loss with the following commands. ```bash # image torchrun --standalone --nproc_per_node 1 eval/loss/eval_loss.py configs/opensora-v1-2/misc/eval_loss.py --data-path /path/to/img.csv --ckpt-path /path/to/ckpt # video torchrun --standalone --nproc_per_node 1 eval/loss/eval_loss.py configs/opensora-v1-2/misc/eval_loss.py --data-path /path/to/vid.csv --ckpt-path /path/to/ckpt # select resolution torchrun --standalone --nproc_per_node 1 eval/loss/eval_loss.py configs/opensora-v1-2/misc/eval_loss.py --data-path /path/to/vid.csv --ckpt-path /path/to/ckpt --resolution 720p ``` To launch multiple jobs at once, use the following script. ```bash bash eval/loss/launch.sh /path/to/ckpt model_name ``` To obtain an organized list of scores: ```bash python eval/loss/tabulate_rl_loss.py --log_dir path/to/log/dir ``` ## VBench [VBench](https://github.com/Vchitect/VBench) is a benchmark for short text to video generation. We provide a script for easily generating samples required by VBench. First, generate the relevant videos with the following commands: ```bash # vbench task, if evaluation all set start_index to 0, end_index to 2000 bash eval/sample.sh /path/to/ckpt num_frames model_name_for_log -4 start_index end_index # Alternatively, launch 8 jobs at once (you must read the script to understand the details) bash eval/vbench/launch.sh /path/to/ckpt num_frames model_name # in addition, you can specify resolution, aspect ratio, sampling steps, flow, and llm-refine bash eval/vbench/launch.sh /path/to/ckpt num_frames model_name res_value aspect_ratio_value steps_value flow_value llm_refine_value # for example # bash eval/vbench/launch.sh /mnt/jfs-hdd/sora/checkpoints/outputs/042-STDiT3-XL-2/epoch1-global_step16200_llm_refine/ema.pt 51 042-STDiT3-XL-2 240p 9:16 30 2 True ``` After generation, install the VBench package following our [installation](../docs/installation.md)'s sections of "Evaluation Dependencies". Then, run the following commands to evaluate the generated samples. ```bash python eval/vbench/calc_vbench.py /path/to/video_folder /path/to/model/ckpt ``` Finally, we obtain the scaled scores for the model by: ```bash python eval/vbench/tabulate_vbench_scores.py --score_dir path/to/score/dir ``` ## VBench-i2v [VBench-i2v](https://github.com/Vchitect/VBench/tree/master/vbench2_beta_i2v) is a benchmark for short image to video generation (beta version). Similarly, install the VBench package following our [installation](../docs/installation.md)'s sections of "Evaluation Dependencies". ```bash # Step 1: generate the relevant videos # vbench i2v tasks, if evaluation all set start_index to 0, end_index to 2000 bash eval/sample.sh /path/to/ckpt num_frames model_name_for_log -5 start_index end_index # Alternatively, launch 8 jobs at once bash eval/vbench_i2v/launch.sh /path/to/ckpt num_frames model_name # Step 2: run vbench to evaluate the generated samples python eval/vbench_i2v/vbench_i2v.py /path/to/video_folder /path/to/model/ckpt # Note that if you need to go to `VBench/vbench2_beta_i2v/utils.py` and change the harded-coded var `image_root` in the `load_i2v_dimension_info` function to your corresponding image folder. # Step 3: obtain the scaled scores python eval/vbench_i2v/tabulate_vbench_i2v_scores.py path/to/videos/folder path/to/your/model/ckpt # this will store the results under `eval/vbench_i2v` in the path/to/your/model/ckpt ``` Similarly as VBench, you can specify resolution, aspect ratio, sampling steps, flow, and llm-refine ```bash bash eval/vbench_i2v/launch.sh /path/to/ckpt num_frames model_name_for_log res_value aspect_ratio_value steps_value flow_value llm_refine_value # for example # bash eval/vbench_i2v/launch.sh /mnt/jfs-hdd/sora/checkpoints/outputs/042-STDiT3-XL-2/epoch1-global_step16200_llm_refine/ema.pt 51 042-STDiT3-XL-2 240p 9:16 30 2 True # if no flow control, use "None" instead ``` ## VAE Install the dependencies package following our [installation](../docs/installation.md)'s s sections of "Evaluation Dependencies". Then, run the following evaluation command: ```bash # metric can any one or list of: ssim, psnr, lpips, flolpips python eval/vae/eval_common_metric.py --batch_size 2 --real_video_dir path/to/original/videos --generated_video_dir path/to/generated/videos --device cuda --sample_fps 24 --crop_size 256 --resolution 256 --num_frames 17 --sample_rate 1 --metric ssim psnr lpips flolpips ```