import torch import numpy as np from diffusers import WanPipeline, AutoencoderKLWan, WanTransformer3DModel, UniPCMultistepScheduler from diffusers.utils import export_to_video, load_image dtype = torch.bfloat16 device = "cuda" model_id = "/mnt/bn/yufan-dev-my/ysh/Ckpts/Wan-AI/Wan2.2-TI2V-5B-Diffusers" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=dtype) pipe.to(device) height = 704 width = 1280 num_frames = 121 num_inference_steps = 50 guidance_scale = 5.0 prompt = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=num_frames, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, ).frames[0] export_to_video(output, "5bit2v_output.mp4", fps=24)