import torch from PIL import Image import librosa from diffsynth import VideoData, save_video_with_audio from diffsynth.pipelines.wan_video_new import WanVideoPipeline, ModelConfig from modelscope import dataset_snapshot_download local_model_path = "Wan-AI/Wan2.2-S2V-14B" pipe = WanVideoPipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(path=[ "/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/1_benchmark/Wan-S2V/models/Wan-AI/Wan2.2-S2V-14B/diffusion_pytorch_model-00001-of-00004.safetensors", "/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/1_benchmark/Wan-S2V/models/Wan-AI/Wan2.2-S2V-14B/diffusion_pytorch_model-00002-of-00004.safetensors", "/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/1_benchmark/Wan-S2V/models/Wan-AI/Wan2.2-S2V-14B/diffusion_pytorch_model-00003-of-00004.safetensors", "/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/1_benchmark/Wan-S2V/models/Wan-AI/Wan2.2-S2V-14B/diffusion_pytorch_model-00004-of-00004.safetensors", ]), ModelConfig(path="/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/1_benchmark/Wan-S2V/models/Wan-AI/Wan2.2-S2V-14B/models_t5_umt5-xxl-enc-bf16.pth"), ModelConfig(path="/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/1_benchmark/Wan-S2V/models/Wan-AI/Wan2.2-S2V-14B/Wan2.1_VAE.pth"), ], audio_processor_config=ModelConfig(path="/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/1_benchmark/Wan-S2V/models/Wan-AI/Wan2.2-S2V-14B/wav2vec2-large-xlsr-53-english/"), ) dataset_snapshot_download( dataset_id="DiffSynth-Studio/example_video_dataset", local_dir="./data/example_video_dataset", allow_file_pattern=f"wans2v/*" ) num_frames = 81 # 4n+1 height = 448 width = 832 prompt = "a person is singing" negative_prompt = "画面模糊,最差质量,画面模糊,细节模糊不清,情绪激动剧烈,手快速抖动,字幕,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" input_image = Image.open("data/example_video_dataset/wans2v/pose.png").convert("RGB").resize((width, height)) # s2v audio input, recommend 16kHz sampling rate audio_path = 'data/example_video_dataset/wans2v/sing.MP3' input_audio, sample_rate = librosa.load(audio_path, sr=16000) # Speech-to-video video = pipe( prompt=prompt, input_image=input_image, negative_prompt=negative_prompt, seed=0, num_frames=num_frames, height=height, width=width, audio_sample_rate=sample_rate, input_audio=input_audio, num_inference_steps=40, ) save_video_with_audio(video[1:], "video_with_audio.mp4", audio_path, fps=16, quality=5) # s2v will use the first (num_frames) frames as reference. height and width must be the same as input_image. And fps should be 16, the same as output video fps. pose_video_path = 'data/example_video_dataset/wans2v/pose.mp4' pose_video = VideoData(pose_video_path, height=height, width=width) # Speech-to-video with pose video = pipe( prompt=prompt, input_image=input_image, negative_prompt=negative_prompt, seed=0, num_frames=num_frames, height=height, width=width, audio_sample_rate=sample_rate, input_audio=input_audio, s2v_pose_video=pose_video, num_inference_steps=40, ) save_video_with_audio(video[1:], "video_pose_with_audio.mp4", audio_path, fps=16, quality=5)