from causvid.models import get_diffusion_wrapper, get_text_encoder_wrapper, get_vae_wrapper import torch.nn.functional as F from typing import Tuple from torch import nn import torch class ODERegression(nn.Module): def __init__(self, args, device): """ Initialize the ODERegression module. This class is self-contained and compute generator losses in the forward pass given precomputed ode solution pairs. This class supports the ode regression loss for both causal and bidirectional models. See Sec 4.3 of CausVid https://arxiv.org/abs/2412.07772 for details """ super().__init__() # Step 1: Initialize all models self.generator = get_diffusion_wrapper(model_name=args.model_name)() self.generator.set_module_grad( module_grad=args.generator_grad ) if getattr(args, "generator_ckpt", False): print(f"Loading pretrained generator from {args.generator_ckpt}") state_dict = torch.load(args.generator_ckpt, map_location="cpu")[ 'generator'] self.generator.load_state_dict( state_dict, strict=True ) self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) if self.num_frame_per_block > 1: self.generator.model.num_frame_per_block = self.num_frame_per_block if args.gradient_checkpointing: self.generator.enable_gradient_checkpointing() self.text_encoder = get_text_encoder_wrapper( model_name=args.model_name)() self.text_encoder.requires_grad_(False) self.vae = get_vae_wrapper(model_name=args.model_name)() self.vae.requires_grad_(False) # Step 2: Initialize all hyperparameters self.denoising_step_list = torch.tensor( args.denoising_step_list, dtype=torch.long, device=device) self.scheduler = self.generator.get_scheduler() if args.warp_denoising_step: # Warp the denoising step according to the scheduler time shift timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32))).cuda() self.denoising_step_list = timesteps[1000 - self.denoising_step_list] self.args = args self.device = device self.dtype = torch.bfloat16 if args.mixed_precision else torch.float32 # for latent frame with zero noise, we probablistically perturb it with an extra small noise # self.extra_noise_step = getattr(args, "extra_noise_step", 0) # self.scheduler = self.generator.get_scheduler() def _process_timestep(self, timestep): """ Pre-process the randomly generated timestep based on the generator's task type. Input: - timestep: [batch_size, num_frame] tensor containing the randomly generated timestep. Output Behavior: - image: check that the second dimension (num_frame) is 1. - bidirectional_video: broadcast the timestep to be the same for all frames. - causal_video: broadcast the timestep to be the same for all frames **in a block**. """ if self.args.generator_task == "image": assert timestep.shape[1] == 1 return timestep elif self.args.generator_task == "bidirectional_video": for index in range(timestep.shape[0]): timestep[index] = timestep[index, 0] return timestep elif self.args.generator_task == "causal_video": # make the noise level the same within every motion block timestep = timestep.reshape( timestep.shape[0], -1, self.num_frame_per_block) timestep[:, :, 1:] = timestep[:, :, 0:1] timestep = timestep.reshape(timestep.shape[0], -1) return timestep else: raise NotImplementedError() @torch.no_grad() def _prepare_generator_input(self, ode_latent: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Given a tensor containing the whole ODE sampling trajectories, randomly choose an intermediate timestep and return the latent as well as the corresponding timestep. Input: - ode_latent: a tensor containing the whole ODE sampling trajectories [batch_size, num_denoising_steps, num_frames, num_channels, height, width]. Output: - noisy_input: a tensor containing the selected latent [batch_size, num_frames, num_channels, height, width]. - timestep: a tensor containing the corresponding timestep [batch_size]. """ batch_size, num_denoising_steps, num_frames, num_channels, height, width = ode_latent.shape # Step 1: Randomly choose a timestep for each frame index = torch.randint(0, len(self.denoising_step_list), [ batch_size, num_frames], device=self.device, dtype=torch.long) index = self._process_timestep(index) noisy_input = torch.gather( ode_latent, dim=1, index=index.reshape(batch_size, 1, num_frames, 1, 1, 1).expand( -1, -1, -1, num_channels, height, width) ).squeeze(1) timestep = self.denoising_step_list[index] # if self.extra_noise_step > 0: # random_timestep = torch.randint(0, self.extra_noise_step, [ # batch_size, num_frames], device=self.device, dtype=torch.long) # perturbed_noisy_input = self.scheduler.add_noise( # noisy_input.flatten(0, 1), # torch.randn_like(noisy_input.flatten(0, 1)), # random_timestep.flatten(0, 1) # ).detach().unflatten(0, (batch_size, num_frames)).type_as(noisy_input) # noisy_input[timestep == 0] = perturbed_noisy_input[timestep == 0] return noisy_input, timestep def generator_loss(self, ode_latent: torch.Tensor, conditional_dict: dict) -> Tuple[torch.Tensor, dict]: """ Generate image/videos from noisy latents and compute the ODE regression loss. Input: - ode_latent: a tensor containing the ODE latents [batch_size, num_denoising_steps, num_frames, num_channels, height, width]. They are ordered from most noisy to clean latents. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). Output: - loss: a scalar tensor representing the generator loss. - log_dict: a dictionary containing additional information for loss timestep breakdown. """ # Step 1: Run generator on noisy latents target_latent = ode_latent[:, -1] noisy_input, timestep = self._prepare_generator_input( ode_latent=ode_latent) pred_image_or_video = self.generator( noisy_image_or_video=noisy_input, # torch.Size([2, 21, 16, 60, 104]) conditional_dict=conditional_dict, timestep=timestep # torch.Size([2, 21]) ) # tensor([ # [1000, 1000, 1000, 0, 0, 0, 757, 757, 757, 757, 757, 757, 0, 0, 0, 522, 522, 522, 522, 522, 522], # [ 522, 522, 522, 1000, 1000, 1000, 522, 522, 522, 1000, 1000, 1000, 0, 0, 0, 522, 522, 522, 1000, 1000, 1000] # ],device='cuda:0') # Step 2: Compute the regression loss mask = timestep != 0 # mask loss = F.mse_loss(pred_image_or_video[mask], target_latent[mask], reduction="mean") log_dict = { "unnormalized_loss": F.mse_loss(pred_image_or_video, target_latent, reduction='none').mean(dim=[1, 2, 3, 4]).detach(), "timestep": timestep.float().mean(dim=1).detach() } return loss, log_dict