from causvid.ode_data.create_lmdb_iterative import get_array_shape_from_lmdb, retrieve_row_from_lmdb from torch.utils.data import Dataset import numpy as np import torch import lmdb class TextDataset(Dataset): def __init__(self, data_path): self.texts = [] with open(data_path, "r") as f: for line in f: self.texts.append(line.strip()) def __len__(self): return len(self.texts) def __getitem__(self, idx): return self.texts[idx] class ODERegressionDataset(Dataset): def __init__(self, data_path, max_pair=int(1e8)): self.data_dict = torch.load(data_path, weights_only=False) self.max_pair = max_pair def __len__(self): return min(len(self.data_dict['prompts']), self.max_pair) def __getitem__(self, idx): """ Outputs: - prompts: List of Strings - latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image. """ return { "prompts": self.data_dict['prompts'][idx], "ode_latent": self.data_dict['latents'][idx].squeeze(0), } class ODERegressionLMDBDataset(Dataset): def __init__(self, data_path: str, max_pair: int = int(1e8)): self.env = lmdb.open(data_path, readonly=True, lock=False, readahead=False, meminit=False) self.latents_shape = get_array_shape_from_lmdb(self.env, 'latents') self.max_pair = max_pair def __len__(self): return min(self.latents_shape[0], self.max_pair) def __getitem__(self, idx): """ Outputs: - prompts: List of Strings - latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image. """ latents = retrieve_row_from_lmdb( self.env, "latents", np.float16, idx, shape=self.latents_shape[1:] ) if len(latents.shape) == 4: latents = latents[None, ...] prompts = retrieve_row_from_lmdb( self.env, "prompts", str, idx ) return { "prompts": prompts, "ode_latent": torch.tensor(latents, dtype=torch.float32) }