import pandas as pd from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor from functools import partial import numpy as np length_bucket_options = { 1: [321, 301, 281, 261, 241, 221, 193, 181, 161, 141, 121, 101, 81, 61, 41, 21], 2: [193, 177, 161, 156, 145, 133, 129, 121, 113, 109, 97, 85, 81, 73, 65, 61, 49, 37, 25], } def find_nearest_length_bucket(length, stride=1): buckets = length_bucket_options[stride] min_bucket = min(buckets) if length < min_bucket: return length valid_buckets = [bucket for bucket in buckets if bucket <= length] return max(valid_buckets) def split_long_videos(df, stride=1, skip_frames=0, skip_end_frames=0, overlap=0): """ 将长视频分割成多个段,充分利用所有帧 Args: df: 输入DataFrame stride: bucket选择的stride参数 skip_frames: 跳过开头的帧数 skip_end_frames: 跳过结尾的帧数 overlap: 段之间的重叠帧数,默认为0 """ result_rows = [] max_bucket = max(length_bucket_options[stride]) for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing videos"): if pd.isna(row.get('new_num_frame')): print(f"Skipping row {idx}: new_num_frame is NaN or missing") continue num_frames = row['new_num_frame'] # 计算可用帧数(去除开头和结尾) available_frames = num_frames - skip_frames - skip_end_frames # 如果可用帧数太少,跳过这个视频 if available_frames < min(length_bucket_options[stride]): continue if available_frames <= max_bucket: # 短视频,直接处理 new_row = row.copy() new_row['start_frame'] = skip_frames bucket_length = find_nearest_length_bucket(available_frames, stride) new_row['end_frame'] = skip_frames + bucket_length new_row['segment_id'] = 0 result_rows.append(new_row) else: # 长视频,分割成多个段 step_size = max_bucket - overlap segment_count = 0 start_pos = skip_frames effective_end = num_frames - skip_end_frames # 有效结束位置 while start_pos < effective_end: remaining_frames = effective_end - start_pos # 如果剩余帧数小于最小bucket,跳过 if remaining_frames < min(length_bucket_options[stride]): break new_row = row.copy() new_row['start_frame'] = start_pos # 计算这个段的长度 segment_length = min(remaining_frames, max_bucket) bucket_length = find_nearest_length_bucket(segment_length, stride) new_row['end_frame'] = start_pos + bucket_length new_row['segment_id'] = segment_count result_rows.append(new_row) # 移动到下一个段的起始位置 start_pos += step_size segment_count += 1 # 如果剩余帧数不足以形成新段,退出 if start_pos + min(length_bucket_options[stride]) > effective_end: break return pd.DataFrame(result_rows) def add_frame_range_with_segments(csv_path, output_path=None, stride=1, skip_frames=0, skip_end_frames=0, overlap=0): """ 为CSV添加start_frame和end_frame列,并将长视频分割成多个段 Args: csv_path: 输入CSV文件路径 output_path: 输出CSV文件路径,如果为None则覆盖原文件 stride: bucket选择的stride参数 skip_frames: 跳过开头的帧数,默认为0 skip_end_frames: 跳过结尾的帧数,默认为0 overlap: 段之间的重叠帧数,默认为0 """ # 读取CSV df = pd.read_csv(csv_path) # 分割长视频并添加帧范围 result_df = split_long_videos(df, stride, skip_frames, skip_end_frames, overlap) # 保存结果 if output_path is None: output_path = csv_path result_df.to_csv(output_path, index=False) return result_df # 使用示例 if __name__ == "__main__": input_csv = '/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/SpatialVID_HQ_step0.csv' output_csv = '/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/SpatialVID_HQ_step1.csv' df = add_frame_range_with_segments(input_csv, output_csv, stride=1, skip_frames=11, skip_end_frames=19, overlap=0) # 打印结果统计 print(f"处理后行数: {len(df)}") print(f"分段统计:") print(df['segment_id'].value_counts().sort_index()) print("\n前几行示例:") print(df.head(10))