import os import pandas as pd import argparse from tqdm import tqdm def extract_uttid_from_video_file(video_file): """ 从videoFile列中提取uttid(去掉.mp4后缀) """ if video_file.endswith('.mp4'): return video_file[:-4] # 去掉.mp4 return video_file def create_filtered_csv(csv_file, output_latent_folder, output_csv_file): """ 创建一个过滤后的CSV文件,只包含需要处理的样本 只使用uttid匹配,不依赖其他元数据 """ # 读取原始CSV df = pd.read_csv(csv_file) print(f"Original dataset size: {len(df)}") # 获取已经存在的latent文件 existing_files = set() if os.path.exists(output_latent_folder): for filename in os.listdir(output_latent_folder): if filename.endswith('.pt'): parts = filename[:-3].split('_') if len(parts) >= 4: # 至少要有uttid + 3个元数据 uttid_parts = parts[:-3] uttid = '_'.join(uttid_parts) existing_files.add(uttid) print(f"Found {len(existing_files)} existing latent files") df_uttids = df['videoFile'].apply(extract_uttid_from_video_file) mask = ~df_uttids.isin(existing_files) filtered_df = df[mask] # 保存到新的CSV文件 os.makedirs(os.path.dirname(output_csv_file), exist_ok=True) filtered_df.to_csv(output_csv_file, index=False) print(f"Filtered dataset size: {len(filtered_df)}") print(f"Filtered CSV saved to: {output_csv_file}") return len(filtered_df) def create_all_filtered_csvs(): """ 为所有数据集创建过滤后的CSV文件 """ base_csv_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/yamls/" base_output_latent_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/" csv_paths = [ "sekai-game-walking-193_updated.csv", "sekai-real-walking-hq-193_updated.csv", "sekai-real-walking-hq-386_updated.csv", "sekai-game-walking-386_updated.csv" ] output_latent_paths = [ "sekai-game-walking-193/latents_stride1", "sekai-real-walking-hq-193/latents_stride1", "sekai-real-walking-hq-386/latents_stride2", "sekai-game-walking-386/latents_stride2" ] for csv_path, output_latent_path in zip(csv_paths, output_latent_paths): original_csv = os.path.join(base_csv_path, csv_path) output_latent_folder = os.path.join(base_output_latent_path, output_latent_path) # 创建过滤后的CSV文件名 filtered_csv_name = csv_path.replace('_updated.csv', '_filtered.csv') filtered_csv_path = os.path.join(base_csv_path, filtered_csv_name) print(f"\nProcessing: {csv_path}") filtered_count = create_filtered_csv( csv_file=original_csv, output_latent_folder=output_latent_folder, output_csv_file=filtered_csv_path ) print(f"Created filtered CSV: {filtered_csv_path} with {filtered_count} samples") def main(): parser = argparse.ArgumentParser(description="Create filtered CSV for processing") # parser.add_argument("--csv_file", type=str, help="Original CSV file path") # parser.add_argument("--output_latent_folder", type=str, help="Output latent folder path") # parser.add_argument("--output_csv_file", type=str, help="Output filtered CSV file path") parser.add_argument("--batch", action="store_true", help="Process all datasets in batch") args = parser.parse_args() create_all_filtered_csvs() # if args.batch: # # 批量处理所有数据集 # create_all_filtered_csvs() # else: # # 单个处理 # if not all([args.csv_file, args.output_latent_folder, args.output_csv_file]): # print("Error: For single processing, --csv_file, --output_latent_folder, and --output_csv_file are required") # return # filtered_count = create_filtered_csv( # csv_file=args.csv_file, # output_latent_folder=args.output_latent_folder, # output_csv_file=args.output_csv_file # ) # if filtered_count == 0: # print("No samples need processing!") # else: # print(f"Ready to process {filtered_count} samples") if __name__ == "__main__": main()