|
|
from functools import partial |
|
|
|
|
|
import torch |
|
|
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn |
|
|
|
|
|
from diffusers import WanTransformer3DModel |
|
|
from diffusers.utils.testing_utils import torch_device |
|
|
|
|
|
|
|
|
CKPT_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers" |
|
|
RESULT_FILENAME = "wan.csv" |
|
|
|
|
|
|
|
|
def get_input_dict(**device_dtype_kwargs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = torch.randn(1, 16, 21, 60, 104, **device_dtype_kwargs) |
|
|
encoder_hidden_states = torch.randn(1, 512, 4096, **device_dtype_kwargs) |
|
|
timestep = torch.tensor([1.0], **device_dtype_kwargs) |
|
|
|
|
|
return {"hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep} |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
scenarios = [ |
|
|
BenchmarkScenario( |
|
|
name=f"{CKPT_ID}-bf16", |
|
|
model_cls=WanTransformer3DModel, |
|
|
model_init_kwargs={ |
|
|
"pretrained_model_name_or_path": CKPT_ID, |
|
|
"torch_dtype": torch.bfloat16, |
|
|
"subfolder": "transformer", |
|
|
}, |
|
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16), |
|
|
model_init_fn=model_init_fn, |
|
|
compile_kwargs={"fullgraph": True}, |
|
|
), |
|
|
BenchmarkScenario( |
|
|
name=f"{CKPT_ID}-layerwise-upcasting", |
|
|
model_cls=WanTransformer3DModel, |
|
|
model_init_kwargs={ |
|
|
"pretrained_model_name_or_path": CKPT_ID, |
|
|
"torch_dtype": torch.bfloat16, |
|
|
"subfolder": "transformer", |
|
|
}, |
|
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16), |
|
|
model_init_fn=partial(model_init_fn, layerwise_upcasting=True), |
|
|
), |
|
|
BenchmarkScenario( |
|
|
name=f"{CKPT_ID}-group-offload-leaf", |
|
|
model_cls=WanTransformer3DModel, |
|
|
model_init_kwargs={ |
|
|
"pretrained_model_name_or_path": CKPT_ID, |
|
|
"torch_dtype": torch.bfloat16, |
|
|
"subfolder": "transformer", |
|
|
}, |
|
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16), |
|
|
model_init_fn=partial( |
|
|
model_init_fn, |
|
|
group_offload_kwargs={ |
|
|
"onload_device": torch_device, |
|
|
"offload_device": torch.device("cpu"), |
|
|
"offload_type": "leaf_level", |
|
|
"use_stream": True, |
|
|
"non_blocking": True, |
|
|
}, |
|
|
), |
|
|
), |
|
|
] |
|
|
|
|
|
runner = BenchmarkMixin() |
|
|
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME) |
|
|
|