|
|
from functools import partial |
|
|
|
|
|
import torch |
|
|
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn |
|
|
|
|
|
from diffusers import BitsAndBytesConfig, FluxTransformer2DModel |
|
|
from diffusers.utils.testing_utils import torch_device |
|
|
|
|
|
|
|
|
CKPT_ID = "black-forest-labs/FLUX.1-dev" |
|
|
RESULT_FILENAME = "flux.csv" |
|
|
|
|
|
|
|
|
def get_input_dict(**device_dtype_kwargs): |
|
|
|
|
|
|
|
|
hidden_states = torch.randn(1, 4096, 64, **device_dtype_kwargs) |
|
|
encoder_hidden_states = torch.randn(1, 512, 4096, **device_dtype_kwargs) |
|
|
pooled_prompt_embeds = torch.randn(1, 768, **device_dtype_kwargs) |
|
|
image_ids = torch.ones(512, 3, **device_dtype_kwargs) |
|
|
text_ids = torch.ones(4096, 3, **device_dtype_kwargs) |
|
|
timestep = torch.tensor([1.0], **device_dtype_kwargs) |
|
|
guidance = torch.tensor([1.0], **device_dtype_kwargs) |
|
|
|
|
|
return { |
|
|
"hidden_states": hidden_states, |
|
|
"encoder_hidden_states": encoder_hidden_states, |
|
|
"img_ids": image_ids, |
|
|
"txt_ids": text_ids, |
|
|
"pooled_projections": pooled_prompt_embeds, |
|
|
"timestep": timestep, |
|
|
"guidance": guidance, |
|
|
} |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
scenarios = [ |
|
|
BenchmarkScenario( |
|
|
name=f"{CKPT_ID}-bf16", |
|
|
model_cls=FluxTransformer2DModel, |
|
|
model_init_kwargs={ |
|
|
"pretrained_model_name_or_path": CKPT_ID, |
|
|
"torch_dtype": torch.bfloat16, |
|
|
"subfolder": "transformer", |
|
|
}, |
|
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16), |
|
|
model_init_fn=model_init_fn, |
|
|
compile_kwargs={"fullgraph": True}, |
|
|
), |
|
|
BenchmarkScenario( |
|
|
name=f"{CKPT_ID}-bnb-nf4", |
|
|
model_cls=FluxTransformer2DModel, |
|
|
model_init_kwargs={ |
|
|
"pretrained_model_name_or_path": CKPT_ID, |
|
|
"torch_dtype": torch.bfloat16, |
|
|
"subfolder": "transformer", |
|
|
"quantization_config": BitsAndBytesConfig( |
|
|
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4" |
|
|
), |
|
|
}, |
|
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16), |
|
|
model_init_fn=model_init_fn, |
|
|
), |
|
|
BenchmarkScenario( |
|
|
name=f"{CKPT_ID}-layerwise-upcasting", |
|
|
model_cls=FluxTransformer2DModel, |
|
|
model_init_kwargs={ |
|
|
"pretrained_model_name_or_path": CKPT_ID, |
|
|
"torch_dtype": torch.bfloat16, |
|
|
"subfolder": "transformer", |
|
|
}, |
|
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16), |
|
|
model_init_fn=partial(model_init_fn, layerwise_upcasting=True), |
|
|
), |
|
|
BenchmarkScenario( |
|
|
name=f"{CKPT_ID}-group-offload-leaf", |
|
|
model_cls=FluxTransformer2DModel, |
|
|
model_init_kwargs={ |
|
|
"pretrained_model_name_or_path": CKPT_ID, |
|
|
"torch_dtype": torch.bfloat16, |
|
|
"subfolder": "transformer", |
|
|
}, |
|
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16), |
|
|
model_init_fn=partial( |
|
|
model_init_fn, |
|
|
group_offload_kwargs={ |
|
|
"onload_device": torch_device, |
|
|
"offload_device": torch.device("cpu"), |
|
|
"offload_type": "leaf_level", |
|
|
"use_stream": True, |
|
|
"non_blocking": True, |
|
|
}, |
|
|
), |
|
|
), |
|
|
] |
|
|
|
|
|
runner = BenchmarkMixin() |
|
|
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME) |
|
|
|