|
|
import yaml |
|
|
import argparse |
|
|
import torch |
|
|
import torchvision |
|
|
from PIL import Image |
|
|
import logging |
|
|
import sys |
|
|
|
|
|
|
|
|
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, HunyuanVideoTransformer3DModel, FlowMatchEulerDiscreteScheduler |
|
|
from diffusers.utils import load_image |
|
|
from transformers import CLIPVisionModel |
|
|
|
|
|
|
|
|
from pipeline_wan_image2video_lowpass import WanImageToVideoPipeline |
|
|
from pipeline_cogvideox_image2video_lowpass import CogVideoXImageToVideoPipeline |
|
|
from pipeline_hunyuan_video_image2video_lowpass import HunyuanVideoImageToVideoPipeline |
|
|
|
|
|
from lp_utils import get_hunyuan_video_size |
|
|
|
|
|
from diffusers.utils import export_to_video |
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', stream=sys.stdout) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
def main(args): |
|
|
|
|
|
IMAGE_PATH = args.image_path |
|
|
PROMPT = args.prompt |
|
|
OUTPUT_PATH = args.output_path |
|
|
MODEL_CACHE_DIR = args.model_cache_dir |
|
|
|
|
|
with open(args.config, 'r') as f: |
|
|
config = yaml.safe_load(f) |
|
|
|
|
|
model_path = config['model']['path'] |
|
|
model_dtype_str = config['model']['dtype'] |
|
|
model_dtype = getattr(torch, model_dtype_str) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
logger.info(f"Using device: {device}") |
|
|
|
|
|
|
|
|
if "Wan" in model_path: |
|
|
image_encoder = CLIPVisionModel.from_pretrained(model_path, |
|
|
subfolder="image_encoder", |
|
|
torch_dtype=torch.float32, |
|
|
cache_dir=MODEL_CACHE_DIR |
|
|
) |
|
|
vae = AutoencoderKLWan.from_pretrained(model_path, |
|
|
subfolder="vae", |
|
|
torch_dtype=torch.float32, |
|
|
cache_dir=MODEL_CACHE_DIR |
|
|
) |
|
|
pipe = WanImageToVideoPipeline.from_pretrained(model_path, |
|
|
vae=vae, |
|
|
image_encoder=image_encoder, |
|
|
torch_dtype=model_dtype, |
|
|
cache_dir=MODEL_CACHE_DIR |
|
|
) |
|
|
|
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=3.0 if config['generation']['height'] == '480' else 5.0) |
|
|
elif "CogVideoX" in model_path: |
|
|
pipe = CogVideoXImageToVideoPipeline.from_pretrained( |
|
|
model_path, |
|
|
torch_dtype=model_dtype, |
|
|
cache_dir=MODEL_CACHE_DIR |
|
|
) |
|
|
elif "HunyuanVideo" in model_path: |
|
|
transformer = HunyuanVideoTransformer3DModel.from_pretrained( |
|
|
model_path, |
|
|
subfolder="transformer", |
|
|
torch_dtype=torch.bfloat16, |
|
|
cache_dir=MODEL_CACHE_DIR |
|
|
) |
|
|
pipe = HunyuanVideoImageToVideoPipeline.from_pretrained( |
|
|
model_path, transformer=transformer, |
|
|
torch_dtype=torch.float16, |
|
|
cache_dir=MODEL_CACHE_DIR |
|
|
) |
|
|
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( |
|
|
pipe.scheduler.config, |
|
|
flow_shift= config['model']['flow_shift'], |
|
|
invert_sigmas = config['model']['flow_reverse'] |
|
|
) |
|
|
pipe.to(device) |
|
|
|
|
|
logger.info("Pipeline loaded successfully.") |
|
|
|
|
|
|
|
|
input_image = load_image(Image.open(IMAGE_PATH)) |
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(42) |
|
|
|
|
|
pipe_kwargs = { |
|
|
"image": input_image, |
|
|
"prompt": PROMPT, |
|
|
"generator": generator, |
|
|
} |
|
|
|
|
|
params_from_config = {**config.get('generation', {}), **config.get('alg', {})} |
|
|
|
|
|
for key, value in params_from_config.items(): |
|
|
if value is not None: |
|
|
pipe_kwargs[key] = value |
|
|
|
|
|
logger.info("Starting video generation...") |
|
|
log_subset = {k: v for k, v in pipe_kwargs.items() if k not in ['image', 'generator']} |
|
|
logger.info(f"Pipeline arguments: {log_subset}") |
|
|
|
|
|
if "HunyuanVideo" in model_path: |
|
|
pipe_kwargs["height"], pipe_kwargs["width"] = get_hunyuan_video_size(config['video']['resolution'], input_image) |
|
|
|
|
|
|
|
|
video_output = pipe(**pipe_kwargs) |
|
|
video_frames = video_output.frames[0] |
|
|
logger.info(f"Video generation complete. Received {len(video_frames)} frames.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
export_to_video(video_frames, OUTPUT_PATH, fps=config['video']['fps']) |
|
|
logger.info("Video saved successfully. Run complete.") |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
parser = argparse.ArgumentParser(description="Arguments") |
|
|
parser.add_argument("--config", type=str, default="./configs/hunyuan_video_alg.yaml") |
|
|
parser.add_argument("--image_path", type=str, default="./assets/a red double decker bus driving down a street.jpg") |
|
|
parser.add_argument("--prompt", type=str, default="a red double decker bus driving down a street") |
|
|
parser.add_argument("--output_path", type=str, default="output.mp4") |
|
|
parser.add_argument("--model_cache_dir", type=str, default=None) |
|
|
args = parser.parse_args() |
|
|
|
|
|
main(args) |