File size: 16,715 Bytes
7f2bd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os
from contextlib import nullcontext
from copy import deepcopy
from datetime import timedelta
from pprint import pformat

import torch
import torch.distributed as dist
import wandb
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device, set_seed
from tqdm import tqdm

from opensora.acceleration.checkpoint import set_grad_checkpoint
from opensora.acceleration.parallel_states import get_data_parallel_group
from opensora.datasets.dataloader import prepare_dataloader
from opensora.registry import DATASETS, MODELS, SCHEDULERS, build_module
from opensora.utils.ckpt_utils import load, model_gathering, model_sharding, record_model_param_shape, save
from opensora.utils.config_utils import define_experiment_workspace, parse_configs, save_training_config
from opensora.utils.lr_scheduler import LinearWarmupLR
from opensora.utils.misc import (
    Timer,
    all_reduce_mean,
    create_logger,
    create_tensorboard_writer,
    format_numel_str,
    get_model_numel,
    requires_grad,
    to_torch_dtype,
)
from opensora.utils.train_utils import MaskGenerator, create_colossalai_plugin, update_ema


def main():
    # ======================================================
    # 1. configs & runtime variables
    # ======================================================
    # == parse configs ==
    cfg = parse_configs(training=True)
    record_time = cfg.get("record_time", False)

    if cfg.get("pa_vdm", False):
        if cfg.get("mask_ratios", None) is not None:
            cfg.mask_ratios = None

    # == device and dtype ==
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."
    cfg_dtype = cfg.get("dtype", "bf16")
    assert cfg_dtype in ["fp16", "bf16"], f"Unknown mixed precision {cfg_dtype}"
    dtype = to_torch_dtype(cfg.get("dtype", "bf16"))

    # == colossalai init distributed training ==
    # NOTE: A very large timeout is set to avoid some processes exit early
    dist.init_process_group(backend="nccl", timeout=timedelta(hours=24))
    print(f"Total number of devices in dist: {dist.get_world_size()}")
    torch.cuda.set_device(dist.get_rank() % torch.cuda.device_count())
    set_seed(cfg.get("seed", 1024))
    coordinator = DistCoordinator()
    device = get_current_device()

    # == init exp_dir ==
    exp_name, exp_dir = define_experiment_workspace(cfg)
    coordinator.block_all()
    if coordinator.is_master():
        os.makedirs(exp_dir, exist_ok=True)
        save_training_config(cfg.to_dict(), exp_dir)
    coordinator.block_all()

    # == init logger, tensorboard & wandb ==
    logger = create_logger(exp_dir)
    logger.info("Experiment directory created at %s", exp_dir)
    logger.info("Training configuration:\n %s", pformat(cfg.to_dict()))
    if coordinator.is_master():
        tb_writer = create_tensorboard_writer(exp_dir)
        if cfg.get("wandb", False):
            wandb.init(project="Open-Sora", name=exp_name, config=cfg.to_dict(), dir="./outputs/wandb")

    # == init ColossalAI booster ==
    logger.info("Building ColossalAI plugin...")
    plugin = create_colossalai_plugin(
        plugin=cfg.get("plugin", "zero2"),
        dtype=cfg_dtype,
        grad_clip=cfg.get("grad_clip", 0),
        sp_size=cfg.get("sp_size", 1),
        reduce_bucket_size_in_m=cfg.get("reduce_bucket_size_in_m", 20),
    )
    logger.info("ColossalAI plugin created")
    booster = Booster(plugin=plugin)
    logger.info("ColossalAI booster created")
    torch.set_num_threads(1)

    # ======================================================
    # 2. build dataset and dataloader
    # ======================================================
    logger.info("Building dataset...")
    # == build dataset ==
    dataset = build_module(cfg.dataset, DATASETS)
    logger.info("Dataset contains %s samples.", len(dataset))

    # == build dataloader ==
    dataloader_args = dict(
        dataset=dataset,
        batch_size=cfg.get("batch_size", None),
        num_workers=cfg.get("num_workers", 4),
        seed=cfg.get("seed", 1024),
        shuffle=True,
        drop_last=True,
        pin_memory=True,
        process_group=get_data_parallel_group(),
        prefetch_factor=cfg.get("prefetch_factor", None),
        fixed_resolution=cfg.get("fixed_resolution", None),
    )
    dataloader, sampler = prepare_dataloader(
        bucket_config=cfg.get("bucket_config", None),
        num_bucket_build_workers=cfg.get("num_bucket_build_workers", 1),
        **dataloader_args,
    )
    num_steps_per_epoch = len(dataloader)

    # ======================================================
    # 3. build model
    # ======================================================
    logger.info("Building models...")
    # == build text-encoder and vae ==
    text_encoder = build_module(cfg.get("text_encoder", None), MODELS, device=device, dtype=dtype)
    if text_encoder is not None:
        text_encoder_output_dim = text_encoder.output_dim
        text_encoder_model_max_length = text_encoder.model_max_length
    else:
        text_encoder_output_dim = cfg.get("text_encoder_output_dim", 4096)
        text_encoder_model_max_length = cfg.get("text_encoder_model_max_length", 300)

    # == build vae ==
    vae = build_module(cfg.get("vae", None), MODELS)
    if vae is not None:
        vae = vae.to(device, dtype).eval()
    if vae is not None:
        input_size = (dataset.num_frames, *dataset.image_size)
        latent_size = vae.get_latent_size(input_size)
        vae_out_channels = vae.out_channels
    else:
        latent_size = (None, None, None)
        vae_out_channels = cfg.get("vae_out_channels", 4)

    # == build diffusion model ==
    model = (
        build_module(
            cfg.model,
            MODELS,
            input_size=latent_size,
            in_channels=vae_out_channels,
            caption_channels=text_encoder_output_dim,
            model_max_length=text_encoder_model_max_length,
            enable_sequence_parallelism=cfg.get("sp_size", 1) > 1,
        )
        .to(device, dtype)
        .train()
    )
    model_numel, model_numel_trainable = get_model_numel(model)
    logger.info(
        "[Diffusion] Trainable model params: %s, Total model params: %s",
        format_numel_str(model_numel_trainable),
        format_numel_str(model_numel),
    )

    # == build ema for diffusion model ==
    ema = deepcopy(model).to(torch.float32).to(device)
    requires_grad(ema, False)
    ema_shape_dict = record_model_param_shape(ema)
    ema.eval()
    update_ema(ema, model, decay=0, sharded=False)

    # == setup loss function, build scheduler ==
    scheduler = build_module(cfg.scheduler, SCHEDULERS)

    # == setup optimizer ==
    optimizer = HybridAdam(
        filter(lambda p: p.requires_grad, model.parameters()),
        adamw_mode=True,
        lr=cfg.get("lr", 1e-4),
        weight_decay=cfg.get("weight_decay", 0),
        eps=cfg.get("adam_eps", 1e-8),
    )

    warmup_steps = cfg.get("warmup_steps", None)

    if warmup_steps is None:
        lr_scheduler = None
    else:
        lr_scheduler = LinearWarmupLR(optimizer, warmup_steps=cfg.get("warmup_steps"))

    # == additional preparation ==
    if cfg.get("grad_checkpoint", False):
        set_grad_checkpoint(model)
    if cfg.get("mask_ratios", None) is not None:
        mask_generator = MaskGenerator(cfg.mask_ratios)

    # =======================================================
    # 4. distributed training preparation with colossalai
    # =======================================================
    logger.info("Preparing for distributed training...")
    # == boosting ==
    # NOTE: we set dtype first to make initialization of model consistent with the dtype; then reset it to the fp32 as we make diffusion scheduler in fp32
    torch.set_default_dtype(dtype)
    model, optimizer, _, dataloader, lr_scheduler = booster.boost(
        model=model,
        optimizer=optimizer,
        lr_scheduler=lr_scheduler,
        dataloader=dataloader,
    )
    torch.set_default_dtype(torch.float)
    logger.info("Boosting model for distributed training")

    # == global variables ==
    cfg_epochs = cfg.get("epochs", 1000)
    start_epoch = start_step = log_step = acc_step = 0
    running_loss = 0.0
    logger.info("Training for %s epochs with %s steps per epoch", cfg_epochs, num_steps_per_epoch)

    # == resume ==
    if cfg.get("load", None) is not None:
        logger.info("Loading checkpoint")
        ret = load(
            booster,
            cfg.load,
            model=model,
            ema=ema,
            optimizer=optimizer,
            lr_scheduler=lr_scheduler,
            sampler=None if cfg.get("start_from_scratch", False) else sampler,
        )
        if not cfg.get("start_from_scratch", False):
            start_epoch, start_step = ret
        logger.info("Loaded checkpoint %s at epoch %s step %s", cfg.load, start_epoch, start_step)

    model_sharding(ema)

    # =======================================================
    # 5. training loop
    # =======================================================
    dist.barrier()
    timers = {}
    timer_keys = [
        "move_data",
        "encode",
        "mask",
        "diffusion",
        "backward",
        "update_ema",
        "reduce_loss",
    ]
    for key in timer_keys:
        if record_time:
            timers[key] = Timer(key, coordinator=coordinator)
        else:
            timers[key] = nullcontext()
    for epoch in range(start_epoch, cfg_epochs):
        # == set dataloader to new epoch ==
        sampler.set_epoch(epoch)
        dataloader_iter = iter(dataloader)
        logger.info("Beginning epoch %s...", epoch)

        # == training loop in an epoch ==
        with tqdm(
            enumerate(dataloader_iter, start=start_step),
            desc=f"Epoch {epoch}",
            disable=not coordinator.is_master(),
            initial=start_step,
            total=num_steps_per_epoch,
        ) as pbar:
            for step, batch in pbar:
                timer_list = []
                with timers["move_data"] as move_data_t:
                    x = batch.pop("video").to(device, dtype)  # [B, C, T, H, W]
                    y = batch.pop("text")
                if record_time:
                    timer_list.append(move_data_t)

                # == visual and text encoding ==
                with timers["encode"] as encode_t:
                    with torch.no_grad():
                        # Prepare visual inputs
                        if cfg.get("load_video_features", False):
                            x = x.to(device, dtype)
                        else:
                            x = vae.encode(x)  # [B, C, T, H/P, W/P]
                        # Prepare text inputs
                        if cfg.get("load_text_features", False):
                            model_args = {"y": y.to(device, dtype)}
                            mask = batch.pop("mask")
                            if isinstance(mask, torch.Tensor):
                                mask = mask.to(device, dtype)
                            model_args["mask"] = mask
                        else:
                            model_args = text_encoder.encode(y)
                if record_time:
                    timer_list.append(encode_t)

                # == mask ==
                with timers["mask"] as mask_t:
                    mask = None
                    if cfg.get("mask_ratios", None) is not None:
                        mask = mask_generator.get_masks(x)
                        model_args["x_mask"] = mask
                if record_time:
                    timer_list.append(mask_t)

                # == video meta info ==
                for k, v in batch.items():
                    if isinstance(v, torch.Tensor):
                        model_args[k] = v.to(device, dtype)

                # == diffusion loss computation ==
                with timers["diffusion"] as loss_t:
                    loss_dict = scheduler.training_losses(model, x, model_args, mask=mask)
                if record_time:
                    timer_list.append(loss_t)

                # == backward & update ==
                with timers["backward"] as backward_t:
                    loss = loss_dict["loss"].mean()
                    booster.backward(loss=loss, optimizer=optimizer)
                    optimizer.step()
                    optimizer.zero_grad()

                    # update learning rate
                    if lr_scheduler is not None:
                        lr_scheduler.step()
                if record_time:
                    timer_list.append(backward_t)

                # == update EMA ==
                # with timers["update_ema"] as ema_t:
                #     update_ema(ema, model.module, optimizer=optimizer, decay=cfg.get("ema_decay", 0.9999))
                # if record_time:
                #     timer_list.append(ema_t)

                # == update log info ==
                with timers["reduce_loss"] as reduce_loss_t:
                    all_reduce_mean(loss)
                    running_loss += loss.item()
                    global_step = epoch * num_steps_per_epoch + step
                    log_step += 1
                    acc_step += 1
                if record_time:
                    timer_list.append(reduce_loss_t)

                # == logging ==
                if coordinator.is_master() and (global_step + 1) % cfg.get("log_every", 1) == 0:
                    avg_loss = running_loss / log_step
                    # progress bar
                    pbar.set_postfix({"loss": avg_loss, "step": step, "global_step": global_step})
                    # tensorboard
                    tb_writer.add_scalar("loss", loss.item(), global_step)
                    # wandb
                    if cfg.get("wandb", False):
                        wandb_dict = {
                            "iter": global_step,
                            "acc_step": acc_step,
                            "epoch": epoch,
                            "loss": loss.item(),
                            "avg_loss": avg_loss,
                            "lr": optimizer.param_groups[0]["lr"],
                        }
                        if record_time:
                            wandb_dict.update(
                                {
                                    "debug/move_data_time": move_data_t.elapsed_time,
                                    "debug/encode_time": encode_t.elapsed_time,
                                    "debug/mask_time": mask_t.elapsed_time,
                                    "debug/diffusion_time": loss_t.elapsed_time,
                                    "debug/backward_time": backward_t.elapsed_time,
                                    # "debug/update_ema_time": ema_t.elapsed_time,
                                    "debug/reduce_loss_time": reduce_loss_t.elapsed_time,
                                }
                            )
                        wandb.log(wandb_dict, step=global_step)

                    running_loss = 0.0
                    log_step = 0

                # == checkpoint saving ==
                ckpt_every = cfg.get("ckpt_every", 0)
                if ckpt_every > 0 and (global_step + 1) % ckpt_every == 0:
                    model_gathering(ema, ema_shape_dict)
                    save_dir = save(
                        booster,
                        exp_dir,
                        model=model,
                        ema=ema,
                        optimizer=optimizer,
                        lr_scheduler=lr_scheduler,
                        sampler=sampler,
                        epoch=epoch,
                        step=step + 1,
                        global_step=global_step + 1,
                        batch_size=cfg.get("batch_size", None),
                    )
                    if dist.get_rank() == 0:
                        model_sharding(ema)
                    logger.info(
                        "Saved checkpoint at epoch %s, step %s, global_step %s to %s",
                        epoch,
                        step + 1,
                        global_step + 1,
                        save_dir,
                    )
                if record_time:
                    log_str = f"Rank {dist.get_rank()} | Epoch {epoch} | Step {step} | "
                    for timer in timer_list:
                        log_str += f"{timer.name}: {timer.elapsed_time:.3f}s | "
                    print(log_str)

        sampler.reset()
        start_step = 0


if __name__ == "__main__":
    main()