File size: 16,715 Bytes
7f2bd75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import os
from contextlib import nullcontext
from copy import deepcopy
from datetime import timedelta
from pprint import pformat
import torch
import torch.distributed as dist
import wandb
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device, set_seed
from tqdm import tqdm
from opensora.acceleration.checkpoint import set_grad_checkpoint
from opensora.acceleration.parallel_states import get_data_parallel_group
from opensora.datasets.dataloader import prepare_dataloader
from opensora.registry import DATASETS, MODELS, SCHEDULERS, build_module
from opensora.utils.ckpt_utils import load, model_gathering, model_sharding, record_model_param_shape, save
from opensora.utils.config_utils import define_experiment_workspace, parse_configs, save_training_config
from opensora.utils.lr_scheduler import LinearWarmupLR
from opensora.utils.misc import (
Timer,
all_reduce_mean,
create_logger,
create_tensorboard_writer,
format_numel_str,
get_model_numel,
requires_grad,
to_torch_dtype,
)
from opensora.utils.train_utils import MaskGenerator, create_colossalai_plugin, update_ema
def main():
# ======================================================
# 1. configs & runtime variables
# ======================================================
# == parse configs ==
cfg = parse_configs(training=True)
record_time = cfg.get("record_time", False)
if cfg.get("pa_vdm", False):
if cfg.get("mask_ratios", None) is not None:
cfg.mask_ratios = None
# == device and dtype ==
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
cfg_dtype = cfg.get("dtype", "bf16")
assert cfg_dtype in ["fp16", "bf16"], f"Unknown mixed precision {cfg_dtype}"
dtype = to_torch_dtype(cfg.get("dtype", "bf16"))
# == colossalai init distributed training ==
# NOTE: A very large timeout is set to avoid some processes exit early
dist.init_process_group(backend="nccl", timeout=timedelta(hours=24))
print(f"Total number of devices in dist: {dist.get_world_size()}")
torch.cuda.set_device(dist.get_rank() % torch.cuda.device_count())
set_seed(cfg.get("seed", 1024))
coordinator = DistCoordinator()
device = get_current_device()
# == init exp_dir ==
exp_name, exp_dir = define_experiment_workspace(cfg)
coordinator.block_all()
if coordinator.is_master():
os.makedirs(exp_dir, exist_ok=True)
save_training_config(cfg.to_dict(), exp_dir)
coordinator.block_all()
# == init logger, tensorboard & wandb ==
logger = create_logger(exp_dir)
logger.info("Experiment directory created at %s", exp_dir)
logger.info("Training configuration:\n %s", pformat(cfg.to_dict()))
if coordinator.is_master():
tb_writer = create_tensorboard_writer(exp_dir)
if cfg.get("wandb", False):
wandb.init(project="Open-Sora", name=exp_name, config=cfg.to_dict(), dir="./outputs/wandb")
# == init ColossalAI booster ==
logger.info("Building ColossalAI plugin...")
plugin = create_colossalai_plugin(
plugin=cfg.get("plugin", "zero2"),
dtype=cfg_dtype,
grad_clip=cfg.get("grad_clip", 0),
sp_size=cfg.get("sp_size", 1),
reduce_bucket_size_in_m=cfg.get("reduce_bucket_size_in_m", 20),
)
logger.info("ColossalAI plugin created")
booster = Booster(plugin=plugin)
logger.info("ColossalAI booster created")
torch.set_num_threads(1)
# ======================================================
# 2. build dataset and dataloader
# ======================================================
logger.info("Building dataset...")
# == build dataset ==
dataset = build_module(cfg.dataset, DATASETS)
logger.info("Dataset contains %s samples.", len(dataset))
# == build dataloader ==
dataloader_args = dict(
dataset=dataset,
batch_size=cfg.get("batch_size", None),
num_workers=cfg.get("num_workers", 4),
seed=cfg.get("seed", 1024),
shuffle=True,
drop_last=True,
pin_memory=True,
process_group=get_data_parallel_group(),
prefetch_factor=cfg.get("prefetch_factor", None),
fixed_resolution=cfg.get("fixed_resolution", None),
)
dataloader, sampler = prepare_dataloader(
bucket_config=cfg.get("bucket_config", None),
num_bucket_build_workers=cfg.get("num_bucket_build_workers", 1),
**dataloader_args,
)
num_steps_per_epoch = len(dataloader)
# ======================================================
# 3. build model
# ======================================================
logger.info("Building models...")
# == build text-encoder and vae ==
text_encoder = build_module(cfg.get("text_encoder", None), MODELS, device=device, dtype=dtype)
if text_encoder is not None:
text_encoder_output_dim = text_encoder.output_dim
text_encoder_model_max_length = text_encoder.model_max_length
else:
text_encoder_output_dim = cfg.get("text_encoder_output_dim", 4096)
text_encoder_model_max_length = cfg.get("text_encoder_model_max_length", 300)
# == build vae ==
vae = build_module(cfg.get("vae", None), MODELS)
if vae is not None:
vae = vae.to(device, dtype).eval()
if vae is not None:
input_size = (dataset.num_frames, *dataset.image_size)
latent_size = vae.get_latent_size(input_size)
vae_out_channels = vae.out_channels
else:
latent_size = (None, None, None)
vae_out_channels = cfg.get("vae_out_channels", 4)
# == build diffusion model ==
model = (
build_module(
cfg.model,
MODELS,
input_size=latent_size,
in_channels=vae_out_channels,
caption_channels=text_encoder_output_dim,
model_max_length=text_encoder_model_max_length,
enable_sequence_parallelism=cfg.get("sp_size", 1) > 1,
)
.to(device, dtype)
.train()
)
model_numel, model_numel_trainable = get_model_numel(model)
logger.info(
"[Diffusion] Trainable model params: %s, Total model params: %s",
format_numel_str(model_numel_trainable),
format_numel_str(model_numel),
)
# == build ema for diffusion model ==
ema = deepcopy(model).to(torch.float32).to(device)
requires_grad(ema, False)
ema_shape_dict = record_model_param_shape(ema)
ema.eval()
update_ema(ema, model, decay=0, sharded=False)
# == setup loss function, build scheduler ==
scheduler = build_module(cfg.scheduler, SCHEDULERS)
# == setup optimizer ==
optimizer = HybridAdam(
filter(lambda p: p.requires_grad, model.parameters()),
adamw_mode=True,
lr=cfg.get("lr", 1e-4),
weight_decay=cfg.get("weight_decay", 0),
eps=cfg.get("adam_eps", 1e-8),
)
warmup_steps = cfg.get("warmup_steps", None)
if warmup_steps is None:
lr_scheduler = None
else:
lr_scheduler = LinearWarmupLR(optimizer, warmup_steps=cfg.get("warmup_steps"))
# == additional preparation ==
if cfg.get("grad_checkpoint", False):
set_grad_checkpoint(model)
if cfg.get("mask_ratios", None) is not None:
mask_generator = MaskGenerator(cfg.mask_ratios)
# =======================================================
# 4. distributed training preparation with colossalai
# =======================================================
logger.info("Preparing for distributed training...")
# == boosting ==
# NOTE: we set dtype first to make initialization of model consistent with the dtype; then reset it to the fp32 as we make diffusion scheduler in fp32
torch.set_default_dtype(dtype)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
dataloader=dataloader,
)
torch.set_default_dtype(torch.float)
logger.info("Boosting model for distributed training")
# == global variables ==
cfg_epochs = cfg.get("epochs", 1000)
start_epoch = start_step = log_step = acc_step = 0
running_loss = 0.0
logger.info("Training for %s epochs with %s steps per epoch", cfg_epochs, num_steps_per_epoch)
# == resume ==
if cfg.get("load", None) is not None:
logger.info("Loading checkpoint")
ret = load(
booster,
cfg.load,
model=model,
ema=ema,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
sampler=None if cfg.get("start_from_scratch", False) else sampler,
)
if not cfg.get("start_from_scratch", False):
start_epoch, start_step = ret
logger.info("Loaded checkpoint %s at epoch %s step %s", cfg.load, start_epoch, start_step)
model_sharding(ema)
# =======================================================
# 5. training loop
# =======================================================
dist.barrier()
timers = {}
timer_keys = [
"move_data",
"encode",
"mask",
"diffusion",
"backward",
"update_ema",
"reduce_loss",
]
for key in timer_keys:
if record_time:
timers[key] = Timer(key, coordinator=coordinator)
else:
timers[key] = nullcontext()
for epoch in range(start_epoch, cfg_epochs):
# == set dataloader to new epoch ==
sampler.set_epoch(epoch)
dataloader_iter = iter(dataloader)
logger.info("Beginning epoch %s...", epoch)
# == training loop in an epoch ==
with tqdm(
enumerate(dataloader_iter, start=start_step),
desc=f"Epoch {epoch}",
disable=not coordinator.is_master(),
initial=start_step,
total=num_steps_per_epoch,
) as pbar:
for step, batch in pbar:
timer_list = []
with timers["move_data"] as move_data_t:
x = batch.pop("video").to(device, dtype) # [B, C, T, H, W]
y = batch.pop("text")
if record_time:
timer_list.append(move_data_t)
# == visual and text encoding ==
with timers["encode"] as encode_t:
with torch.no_grad():
# Prepare visual inputs
if cfg.get("load_video_features", False):
x = x.to(device, dtype)
else:
x = vae.encode(x) # [B, C, T, H/P, W/P]
# Prepare text inputs
if cfg.get("load_text_features", False):
model_args = {"y": y.to(device, dtype)}
mask = batch.pop("mask")
if isinstance(mask, torch.Tensor):
mask = mask.to(device, dtype)
model_args["mask"] = mask
else:
model_args = text_encoder.encode(y)
if record_time:
timer_list.append(encode_t)
# == mask ==
with timers["mask"] as mask_t:
mask = None
if cfg.get("mask_ratios", None) is not None:
mask = mask_generator.get_masks(x)
model_args["x_mask"] = mask
if record_time:
timer_list.append(mask_t)
# == video meta info ==
for k, v in batch.items():
if isinstance(v, torch.Tensor):
model_args[k] = v.to(device, dtype)
# == diffusion loss computation ==
with timers["diffusion"] as loss_t:
loss_dict = scheduler.training_losses(model, x, model_args, mask=mask)
if record_time:
timer_list.append(loss_t)
# == backward & update ==
with timers["backward"] as backward_t:
loss = loss_dict["loss"].mean()
booster.backward(loss=loss, optimizer=optimizer)
optimizer.step()
optimizer.zero_grad()
# update learning rate
if lr_scheduler is not None:
lr_scheduler.step()
if record_time:
timer_list.append(backward_t)
# == update EMA ==
# with timers["update_ema"] as ema_t:
# update_ema(ema, model.module, optimizer=optimizer, decay=cfg.get("ema_decay", 0.9999))
# if record_time:
# timer_list.append(ema_t)
# == update log info ==
with timers["reduce_loss"] as reduce_loss_t:
all_reduce_mean(loss)
running_loss += loss.item()
global_step = epoch * num_steps_per_epoch + step
log_step += 1
acc_step += 1
if record_time:
timer_list.append(reduce_loss_t)
# == logging ==
if coordinator.is_master() and (global_step + 1) % cfg.get("log_every", 1) == 0:
avg_loss = running_loss / log_step
# progress bar
pbar.set_postfix({"loss": avg_loss, "step": step, "global_step": global_step})
# tensorboard
tb_writer.add_scalar("loss", loss.item(), global_step)
# wandb
if cfg.get("wandb", False):
wandb_dict = {
"iter": global_step,
"acc_step": acc_step,
"epoch": epoch,
"loss": loss.item(),
"avg_loss": avg_loss,
"lr": optimizer.param_groups[0]["lr"],
}
if record_time:
wandb_dict.update(
{
"debug/move_data_time": move_data_t.elapsed_time,
"debug/encode_time": encode_t.elapsed_time,
"debug/mask_time": mask_t.elapsed_time,
"debug/diffusion_time": loss_t.elapsed_time,
"debug/backward_time": backward_t.elapsed_time,
# "debug/update_ema_time": ema_t.elapsed_time,
"debug/reduce_loss_time": reduce_loss_t.elapsed_time,
}
)
wandb.log(wandb_dict, step=global_step)
running_loss = 0.0
log_step = 0
# == checkpoint saving ==
ckpt_every = cfg.get("ckpt_every", 0)
if ckpt_every > 0 and (global_step + 1) % ckpt_every == 0:
model_gathering(ema, ema_shape_dict)
save_dir = save(
booster,
exp_dir,
model=model,
ema=ema,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
sampler=sampler,
epoch=epoch,
step=step + 1,
global_step=global_step + 1,
batch_size=cfg.get("batch_size", None),
)
if dist.get_rank() == 0:
model_sharding(ema)
logger.info(
"Saved checkpoint at epoch %s, step %s, global_step %s to %s",
epoch,
step + 1,
global_step + 1,
save_dir,
)
if record_time:
log_str = f"Rank {dist.get_rank()} | Epoch {epoch} | Step {step} | "
for timer in timer_list:
log_str += f"{timer.name}: {timer.elapsed_time:.3f}s | "
print(log_str)
sampler.reset()
start_step = 0
if __name__ == "__main__":
main()
|