File size: 8,097 Bytes
751adfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gc
import inspect
import logging
import os
import queue
import threading
from contextlib import nullcontext
from dataclasses import dataclass
from typing import Any, Callable, Dict, Optional, Union

import pandas as pd
import torch
import torch.utils.benchmark as benchmark

from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils.testing_utils import require_torch_gpu, torch_device


logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(name)s: %(message)s")
logger = logging.getLogger(__name__)

NUM_WARMUP_ROUNDS = 5


def benchmark_fn(f, *args, **kwargs):
    t0 = benchmark.Timer(
        stmt="f(*args, **kwargs)",
        globals={"args": args, "kwargs": kwargs, "f": f},
        num_threads=1,
    )
    return float(f"{(t0.blocked_autorange().mean):.3f}")


def flush():
    gc.collect()
    torch.cuda.empty_cache()
    torch.cuda.reset_max_memory_allocated()
    torch.cuda.reset_peak_memory_stats()


# Adapted from https://github.com/lucasb-eyer/cnn_vit_benchmarks/blob/15b665ff758e8062131353076153905cae00a71f/main.py
def calculate_flops(model, input_dict):
    try:
        from torchprofile import profile_macs
    except ModuleNotFoundError:
        raise

    # This is a hacky way to convert the kwargs to args as `profile_macs` cries about kwargs.
    sig = inspect.signature(model.forward)
    param_names = [
        p.name
        for p in sig.parameters.values()
        if p.kind
        in (
            inspect.Parameter.POSITIONAL_ONLY,
            inspect.Parameter.POSITIONAL_OR_KEYWORD,
        )
        and p.name != "self"
    ]
    bound = sig.bind_partial(**input_dict)
    bound.apply_defaults()
    args = tuple(bound.arguments[name] for name in param_names)

    model.eval()
    with torch.no_grad():
        macs = profile_macs(model, args)
    flops = 2 * macs  # 1 MAC operation = 2 FLOPs (1 multiplication + 1 addition)
    return flops


def calculate_params(model):
    return sum(p.numel() for p in model.parameters())


# Users can define their own in case this doesn't suffice. For most cases,
# it should be sufficient.
def model_init_fn(model_cls, group_offload_kwargs=None, layerwise_upcasting=False, **init_kwargs):
    model = model_cls.from_pretrained(**init_kwargs).eval()
    if group_offload_kwargs and isinstance(group_offload_kwargs, dict):
        model.enable_group_offload(**group_offload_kwargs)
    else:
        model.to(torch_device)
    if layerwise_upcasting:
        model.enable_layerwise_casting(
            storage_dtype=torch.float8_e4m3fn, compute_dtype=init_kwargs.get("torch_dtype", torch.bfloat16)
        )
    return model


@dataclass
class BenchmarkScenario:
    name: str
    model_cls: ModelMixin
    model_init_kwargs: Dict[str, Any]
    model_init_fn: Callable
    get_model_input_dict: Callable
    compile_kwargs: Optional[Dict[str, Any]] = None


@require_torch_gpu
class BenchmarkMixin:
    def pre_benchmark(self):
        flush()
        torch.compiler.reset()

    def post_benchmark(self, model):
        model.cpu()
        flush()
        torch.compiler.reset()

    @torch.no_grad()
    def run_benchmark(self, scenario: BenchmarkScenario):
        # 0) Basic stats
        logger.info(f"Running scenario: {scenario.name}.")
        try:
            model = model_init_fn(scenario.model_cls, **scenario.model_init_kwargs)
            num_params = round(calculate_params(model) / 1e9, 2)
            try:
                flops = round(calculate_flops(model, input_dict=scenario.get_model_input_dict()) / 1e9, 2)
            except Exception as e:
                logger.info(f"Problem in calculating FLOPs:\n{e}")
                flops = None
            model.cpu()
            del model
        except Exception as e:
            logger.info(f"Error while initializing the model and calculating FLOPs:\n{e}")
            return {}
        self.pre_benchmark()

        # 1) plain stats
        results = {}
        plain = None
        try:
            plain = self._run_phase(
                model_cls=scenario.model_cls,
                init_fn=scenario.model_init_fn,
                init_kwargs=scenario.model_init_kwargs,
                get_input_fn=scenario.get_model_input_dict,
                compile_kwargs=None,
            )
        except Exception as e:
            logger.info(f"Benchmark could not be run with the following error:\n{e}")
            return results

        # 2) compiled stats (if any)
        compiled = {"time": None, "memory": None}
        if scenario.compile_kwargs:
            try:
                compiled = self._run_phase(
                    model_cls=scenario.model_cls,
                    init_fn=scenario.model_init_fn,
                    init_kwargs=scenario.model_init_kwargs,
                    get_input_fn=scenario.get_model_input_dict,
                    compile_kwargs=scenario.compile_kwargs,
                )
            except Exception as e:
                logger.info(f"Compilation benchmark could not be run with the following error\n: {e}")
                if plain is None:
                    return results

        # 3) merge
        result = {
            "scenario": scenario.name,
            "model_cls": scenario.model_cls.__name__,
            "num_params_B": num_params,
            "flops_G": flops,
            "time_plain_s": plain["time"],
            "mem_plain_GB": plain["memory"],
            "time_compile_s": compiled["time"],
            "mem_compile_GB": compiled["memory"],
        }
        if scenario.compile_kwargs:
            result["fullgraph"] = scenario.compile_kwargs.get("fullgraph", False)
            result["mode"] = scenario.compile_kwargs.get("mode", "default")
        else:
            result["fullgraph"], result["mode"] = None, None
        return result

    def run_bencmarks_and_collate(self, scenarios: Union[BenchmarkScenario, list[BenchmarkScenario]], filename: str):
        if not isinstance(scenarios, list):
            scenarios = [scenarios]
        record_queue = queue.Queue()
        stop_signal = object()

        def _writer_thread():
            while True:
                item = record_queue.get()
                if item is stop_signal:
                    break
                df_row = pd.DataFrame([item])
                write_header = not os.path.exists(filename)
                df_row.to_csv(filename, mode="a", header=write_header, index=False)
                record_queue.task_done()

            record_queue.task_done()

        writer = threading.Thread(target=_writer_thread, daemon=True)
        writer.start()

        for s in scenarios:
            try:
                record = self.run_benchmark(s)
                if record:
                    record_queue.put(record)
                else:
                    logger.info(f"Record empty from scenario: {s.name}.")
            except Exception as e:
                logger.info(f"Running scenario ({s.name}) led to error:\n{e}")
        record_queue.put(stop_signal)
        logger.info(f"Results serialized to {filename=}.")

    def _run_phase(
        self,
        *,
        model_cls: ModelMixin,
        init_fn: Callable,
        init_kwargs: Dict[str, Any],
        get_input_fn: Callable,
        compile_kwargs: Optional[Dict[str, Any]],
    ) -> Dict[str, float]:
        # setup
        self.pre_benchmark()

        # init & (optional) compile
        model = init_fn(model_cls, **init_kwargs)
        if compile_kwargs:
            model.compile(**compile_kwargs)

        # build inputs
        inp = get_input_fn()

        # measure
        run_ctx = torch._inductor.utils.fresh_inductor_cache() if compile_kwargs else nullcontext()
        with run_ctx:
            for _ in range(NUM_WARMUP_ROUNDS):
                _ = model(**inp)
            time_s = benchmark_fn(lambda m, d: m(**d), model, inp)
        mem_gb = torch.cuda.max_memory_allocated() / (1024**3)
        mem_gb = round(mem_gb, 2)

        # teardown
        self.post_benchmark(model)
        del model
        return {"time": time_s, "memory": mem_gb}