File size: 2,286 Bytes
839dda3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import os
import json
import torch
import numpy as np
import PIL
from PIL import Image
from IPython.display import HTML
from pyramid_dit import PyramidDiTForVideoGeneration
from IPython.display import Image as ipython_image
from diffusers.utils import load_image, export_to_video, export_to_gif
# variant='diffusion_transformer_384p' # For low resolution variant
model_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/rain1011/pyramid-flow-miniflux/" # The downloaded checkpoint dir
model_name = "pyramid_flux" # select the model "pyramid_flux" or "pyramid_mmdit"
variant='diffusion_transformer_384p' # For high resolution variant
model_dtype = 'bf16'
prompt = "A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors"
# used for 384p model variant
width = 640
height = 384
# used for 768p model variant
# width = 1280
# height = 768
temp = 16 # temp in [1, 31] <=> frame in [1, 241] <=> duration in [0, 10s]
# Noting that, for the 384p version, only supports maximum 5s generation (temp = 16)
device_id = 0
torch.cuda.set_device(device_id)
model = PyramidDiTForVideoGeneration(
model_path,
model_dtype,
model_name=model_name,
model_variant=variant,
)
model.vae.to("cuda")
model.dit.to("cuda")
model.text_encoder.to("cuda")
model.vae.enable_tiling()
if model_dtype == "bf16":
torch_dtype = torch.bfloat16
elif model_dtype == "fp16":
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
with torch.no_grad(), torch.amp.autocast('cuda', enabled=True if model_dtype != 'fp32' else False, dtype=torch_dtype):
frames = model.generate(
prompt=prompt,
num_inference_steps=[20, 20, 20],
video_num_inference_steps=[10, 10, 10],
height=height,
width=width,
temp=temp,
guidance_scale=7.0, # The guidance for the first frame, set it to 7 for 384p variant
video_guidance_scale=5.0, # The guidance for the other video latent
output_type="pil",
save_memory=True, # If you have enough GPU memory, set it to `False` to improve vae decoding speed
)
export_to_video(frames, "./text_to_video_sample.mp4", fps=24) |