File size: 6,903 Bytes
e31e7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import argparse
import pandas as pd
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
# 添加线程锁保护共享资源
video_data_lock = threading.Lock()
matched_count_lock = threading.Lock()
def process_video_file(video_file, args, csv_video_mapping):
"""处理单个视频文件的函数"""
video_path = os.path.join(args.input_video_root, video_file)
video_filename = os.path.splitext(video_file)[0]
matched_row = None
for csv_prefix, row in csv_video_mapping.items():
if video_filename.startswith(csv_prefix):
matched_row = row
break
result = None
if matched_row is not None:
final_csv_path = os.path.join(args.output_csv_path, (video_filename + ".csv"))
if os.path.exists(final_csv_path):
# 检查CSV文件是否损坏
try:
import pandas as pd
# 尝试读取CSV文件来验证其完整性
pd.read_csv(final_csv_path)
return None # 文件存在且有效,不需要重新处理
except (pd.errors.EmptyDataError, pd.errors.ParserError, UnicodeDecodeError, FileNotFoundError) as e:
# CSV文件损坏,删除它
print(f"Warning: CSV file {final_csv_path} is corrupted ({e}). Deleting and will recreate.")
os.remove(final_csv_path)
result = {
'videoFile': video_filename + ".mp4",
'cameraFile': matched_row['cameraFile'],
'location': matched_row['location'],
'scene': matched_row['scene'],
'crowdDensity': matched_row['crowdDensity'],
'weather': matched_row['weather'],
'timeOfDay': matched_row['timeOfDay'],
}
else:
print(f"Warning: No CSV record found for video file: {video_file}")
return result
# 多线程处理主代码
def process_videos_multithreaded(video_files, args, csv_video_mapping, max_workers=4):
video_data = []
matched_count = 0
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# 提交所有任务
future_to_video = {
executor.submit(process_video_file, video_file, args, csv_video_mapping): video_file
for video_file in video_files
}
# 处理完成的任务
for future in tqdm(as_completed(future_to_video), total=len(video_files), desc="Processing videos"):
video_file = future_to_video[future]
try:
result = future.result()
if result is not None:
with video_data_lock:
video_data.append(result)
with matched_count_lock:
matched_count += 1
except Exception as exc:
print(f'Video {video_file} generated an exception: {exc}')
return video_data, matched_count
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_csv",
type=str,
default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/yamls/sekai-game-walking_updated.csv",
)
parser.add_argument(
"--input_video_root", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/sekai-game-walking-386"
)
parser.add_argument(
"--output_csv_path",
type=str,
default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/yamls/sekai-game-walking-386",
)
parser.add_argument(
"--output_csv_file",
type=str,
default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/yamls/temp_input_csv/sekai-game-walking-386.csv",
)
parser.add_argument("--num_workers", type=int, default=16)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
# 读取CSV文件
df = pd.read_csv(args.input_csv)
# 保留需要的字段,过滤掉不需要的字段
keep_columns = ['videoFile', 'cameraFile', 'caption', 'location', 'scene', 'crowdDensity', 'weather', 'timeOfDay']
df = df[keep_columns].copy()
# 创建CSV中视频文件名前缀到记录的映射
csv_video_mapping = {}
for idx, row in df.iterrows():
video_prefix = os.path.splitext(os.path.basename(row['videoFile']))[0]
csv_video_mapping[video_prefix] = row
# 获取视频文件夹中的所有视频文件
video_files = []
for file in os.listdir(args.input_video_root):
if file.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.wmv', '.flv')): # 添加更多视频格式
video_files.append(file)
# # 准备视频数据
# video_data = []
# matched_count = 0
# for video_file in tqdm(video_files):
# video_path = os.path.join(args.input_video_root, video_file)
# video_filename = os.path.splitext(video_file)[0]
# matched_row = None
# for csv_prefix, row in csv_video_mapping.items():
# if video_filename.startswith(csv_prefix):
# matched_row = row
# break
# if matched_row is not None:
# final_csv_path = os.path.join(args.output_csv_path, (video_filename + ".csv"))
# if not os.path.exists(final_csv_path):
# video_data.append({
# "video_key": video_filename,
# 'videoFile': video_filename + ".mp4",
# 'cameraFile': matched_row['cameraFile'],
# 'location': matched_row['location'],
# 'scene': matched_row['scene'],
# 'crowdDensity': matched_row['crowdDensity'],
# 'weather': matched_row['weather'],
# 'timeOfDay': matched_row['timeOfDay'],
# })
# matched_count += 1
# else:
# print(f"Warning: No CSV record found for video file: {video_file}")
video_data, matched_count = process_videos_multithreaded(video_files, args, csv_video_mapping, max_workers=args.num_workers)
print(f"Successfully matched {matched_count} videos with CSV records")
print(f"Total video data to process: {len(video_data)}")
if video_data:
output_df = pd.DataFrame(video_data)
output_csv_file = args.output_csv_file
output_df.to_csv(output_csv_file, index=False)
print(f"Video data saved to: {output_csv_file}")
print(f"Saved {len(video_data)} video records")
else:
output_df = pd.DataFrame()
output_csv_file = args.output_csv_file
output_df.to_csv(output_csv_file, index=False)
print(f"Empty video data saved to: {output_csv_file}")
print("No video data to save - created empty CSV file") |