File size: 4,156 Bytes
e31e7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os

os.environ["HF_ENABLE_PARALLEL_LOADING"] = "yes"

import torch
from diffusers import AutoencoderKLHunyuanVideo
from diffusers.video_processor import VideoProcessor
from diffusers.utils import export_to_video

device = "cuda"
pretrained_model_name_or_path = "/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo"
vae = AutoencoderKLHunyuanVideo.from_pretrained(
    pretrained_model_name_or_path,
    subfolder="vae",
    torch_dtype=torch.float32,
).to(device)
vae.eval()
vae.requires_grad_(False)
vae.enable_tiling()

vae_scale_factor_spatial = vae.spatial_compression_ratio
video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial)

latents = torch.load('/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/0_final_sekai_dataset/sekai-real-drone/latents_stride1/9F82nRgRthI_0046499_0046799_281_384_640.pt', map_location='cpu', weights_only=False)
vae_latents = latents['vae_latent'] / vae.config.scaling_factor
# vae_latents = vae_latents.to(device=device, dtype=vae.dtype)[:, :9, :, :]

video = vae.decode(vae_latents.unsqueeze(0).to(vae.device), return_dict=False)[0]
video = video_processor.postprocess_video(video, output_type="pil")
export_to_video(video[0], "output_fp_hv_33.mp4", fps=30)

# video[0][0].save("1_0.png")
# video[0][-1].save("2_0.png")

# first_vae_latents = latents['vae_latent'][:, 0, :, :].unsqueeze(1) / vae.config.scaling_factor
# first_vae_latents = first_vae_latents.to(device=device, dtype=vae.dtype)
# first_image = vae.decode(first_vae_latents.unsqueeze(0), return_dict=False)[0]
# first_image = video_processor.postprocess_video(first_image, output_type="pil")[0][0]
# first_image.save("1_1.png")

# last_vae_latents = latents['vae_latent'][:, -1, :, :].unsqueeze(1) / vae.config.scaling_factor
# last_vae_latents = last_vae_latents.to(device=device, dtype=vae.dtype)
# last_image = vae.decode(last_vae_latents.unsqueeze(0), return_dict=False)[0]
# last_image = video_processor.postprocess_video(last_image, output_type="pil")[0][0]
# last_image.save("2_1.png")

# print(f"Max memory: {torch.cuda.max_memory_allocated() / 1024**3:.3f} GB")

# import sys
# sys.path.append("/mnt/bn/yufan-dev-my/ysh/Codes/Efficient/fp_train/dance_forcing/utils")

# from utils_framepack import get_framepack_input_i2v

# (
#     model_input,  # torch.Size([2, 16, 9, 60, 104])
#     indices_latents,  # torch.Size([2, 9])
#     latents_clean,  # torch.Size([2, 16, 2, 60, 104])
#     indices_clean_latents,  # torch.Size([2, 2])
#     latents_history_2x,  # torch.Size([2, 16, 2, 60, 104])
#     indices_latents_history_2x,  # torch.Size([2, 2])
#     latents_history_4x,  # torch.Size([2, 16, 16, 60, 104])
#     indices_latents_history_4x,  # torch.Size([2, 16])
#     section_to_video_idx,
# ) = get_framepack_input_i2v(
#     vae_latents=latents['vae_latent'].unsqueeze(0),
#     latent_window_size=9,
#     vanilla_sampling=True,
#     is_local_flf2v=True,
#     dtype=torch.bfloat16,
# )

# vae_latents_1 = torch.cat([model_input[0:1], model_input[-1:]], dim = 2)
# vae_latents_1 = vae_latents_1.to(vae.device, dtype=vae.dtype) / vae.config.scaling_factor
# video = vae.decode(vae_latents_1, return_dict=False)[0]
# video = video_processor.postprocess_video(video, output_type="pil")
# export_to_video(video[0], "output_fp_f1_test_1.mp4", fps=30)


# def remove_front_padding(tensor, dim=1):
#     non_zero_indices = torch.any(tensor != 0, dim=tuple(i for i in range(tensor.ndim) if i != dim))
#     first_non_zero = torch.argmax(non_zero_indices.float())
#     slices = [slice(None)] * tensor.ndim
#     slices[dim] = slice(first_non_zero.item(), None)
#     return tensor[tuple(slices)]

# vae_latents_1 = remove_front_padding(torch.cat([latents_history_4x[-1:], latents_history_2x[-1:], latents_clean[-1:][:, :, 0:1,], model_input[-1:], latents_clean[-1:][:, :, 1:,]], dim = 2), dim = 2)
# vae_latents_1 = vae_latents_1.to(vae.device, dtype=vae.dtype) / vae.config.scaling_factor
# video = vae.decode(vae_latents_1, return_dict=False)[0]
# video = video_processor.postprocess_video(video, output_type="pil")
# export_to_video(video[0], "output_fp_f1_test_2.mp4", fps=30)

# import pdb;pdb.set_trace()