from vlmeval.smp import * from vlmeval.dataset import SUPPORTED_DATASETS def get_score(model, dataset): file_name = f'{model}/{model}_{dataset}' if listinstr([ 'CCBench', 'MMBench', 'SEEDBench_IMG', 'MMMU', 'ScienceQA', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'BLINK', 'VisOnlyQA-VLMEvalKit' ], dataset): file_name += '_acc.csv' elif listinstr(['MME', 'Hallusion', 'LLaVABench'], dataset): file_name += '_score.csv' elif listinstr(['MMVet', 'MathVista'], dataset): file_name += '_gpt-4-turbo_score.csv' elif listinstr(['COCO', 'OCRBench'], dataset): file_name += '_score.json' else: raise NotImplementedError if not osp.exists(file_name): return {} data = load(file_name) ret = {} if dataset == 'CCBench': ret[dataset] = data['Overall'][0] * 100 elif dataset == 'MMBench': for n, a in zip(data['split'], data['Overall']): if n == 'dev': ret['MMBench_DEV_EN'] = a * 100 elif n == 'test': ret['MMBench_TEST_EN'] = a * 100 elif dataset == 'MMBench_CN': for n, a in zip(data['split'], data['Overall']): if n == 'dev': ret['MMBench_DEV_CN'] = a * 100 elif n == 'test': ret['MMBench_TEST_CN'] = a * 100 elif listinstr(['SEEDBench', 'ScienceQA', 'MMBench', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'BLINK'], dataset): ret[dataset] = data['Overall'][0] * 100 elif 'MME' == dataset: ret[dataset] = data['perception'][0] + data['reasoning'][0] elif 'MMVet' == dataset: data = data[data['Category'] == 'Overall'] ret[dataset] = float(data.iloc[0]['acc']) elif 'HallusionBench' == dataset: data = data[data['split'] == 'Overall'] for met in ['aAcc', 'qAcc', 'fAcc']: ret[dataset + f' ({met})'] = float(data.iloc[0][met]) elif 'MMMU' in dataset: data = data[data['split'] == 'validation'] ret['MMMU (val)'] = float(data.iloc[0]['Overall']) * 100 elif 'MathVista' in dataset: data = data[data['Task&Skill'] == 'Overall'] ret[dataset] = float(data.iloc[0]['acc']) elif 'LLaVABench' in dataset: data = data[data['split'] == 'overall'].iloc[0] ret[dataset] = float(data['Relative Score (main)']) elif 'OCRBench' in dataset: ret[dataset] = data['Final Score'] elif dataset == 'VisOnlyQA-VLMEvalKit': for n, a in zip(data['split'], data['Overall']): ret[f'VisOnlyQA-VLMEvalKit_{n}'] = a * 100 return ret def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, nargs='+', default=[]) parser.add_argument("--model", type=str, nargs='+', required=True) args = parser.parse_args() return args def gen_table(models, datasets): res = defaultdict(dict) for m in models: for d in datasets: try: res[m].update(get_score(m, d)) except Exception as e: logging.warning(f'{type(e)}: {e}') logging.warning(f'Missing Results for Model {m} x Dataset {d}') keys = [] for m in models: for d in res[m]: keys.append(d) keys = list(set(keys)) keys.sort() final = defaultdict(list) for m in models: final['Model'].append(m) for k in keys: if k in res[m]: final[k].append(res[m][k]) else: final[k].append(None) final = pd.DataFrame(final) dump(final, 'summ.csv') if len(final) >= len(final.iloc[0].keys()): print(tabulate(final)) else: print(tabulate(final.T)) if __name__ == '__main__': args = parse_args() if args.data == []: args.data = list(SUPPORTED_DATASETS) gen_table(args.model, args.data)