# 配置系统 默认情况下,VLMEvalKit通过在`run.py`脚本中使用`--model`和`--data`参数设置模型名称(在`/vlmeval/config.py`中定义)和数据集名称(在`vlmeval/dataset/__init__.py` 或 `vlmeval/dataset/video_dataset_config.py` 中定义)来启动评估。这种方法在大多数情况下简单且高效,但当用户希望使用不同设置评估多个模型/数据集时,可能不够灵活。 为了解决这个问题,VLMEvalKit提供了一个更灵活的配置系统。用户可以在json文件中指定模型和数据集设置,并通过`--config`参数将配置文件的路径传递给`run.py`脚本。以下是一个示例配置json: ```json { "model": { "GPT4o_20240806_T00_HIGH": { "class": "GPT4V", "model": "gpt-4o-2024-08-06", "temperature": 0, "img_detail": "high" }, "GPT4o_20240806_T10_Low": { "class": "GPT4V", "model": "gpt-4o-2024-08-06", "temperature": 1.0, "img_detail": "low" }, "GPT4o_20241120": {} }, "data": { "MME-RealWorld-Lite": { "class": "MMERealWorld", "dataset": "MME-RealWorld-Lite" }, "MMBench_DEV_EN_V11": { "class": "ImageMCQDataset", "dataset": "MMBench_DEV_EN_V11" }, "MMBench_Video_8frame_nopack":{}, "Video-MME_16frame_subs": { "class": "VideoMME", "dataset": "Video-MME", "nframe": 16, "use_subtitle": true }, } } ``` 配置json的解释: 1. 现在我们支持两个字段:`model`和`data`,每个字段都是一个字典。字典的键是模型/数据集的名称(由用户设置),值是模型/数据集的设置。 2. 对于`model`中的项目,值是一个包含以下键的字典: - `class`:模型的类名,应该是`vlmeval/vlm/__init__.py`(开源模型)或`vlmeval/api/__init__.py`(API模型)中定义的类名。 - 其他kwargs:其他kwargs是模型特定的参数,请参考模型类的定义以获取详细用法。例如,`model`、`temperature`、`img_detail`是`GPT4V`类的参数。值得注意的是,大多数模型类都需要`model`参数。 - Tip:在位于`vlmeval/config.py`的变量`supported_VLM`中的已经被定义的模型可以作为`model`的键,而不需要填对应的值即可启动。例如,`GPT4o_20240806_T00_HIGH: {}`是等价于`GPT4o_20240806_T00_HIGH: {'class': 'GPT4V', 'model': 'gpt-4o-2024-08-06', 'temperature': 0, 'img_size': -1, 'img_detail': 'high', 'retry': 10, 'verbose': False}`。 3. 对于字典`data`,我们建议用户使用官方数据集名称作为键(或键的一部分),因为我们经常根据数据集名称确定后处理/判断设置。对于`data`中的项目,值是一个包含以下键的字典: - `class`:数据集的类名,应该是`vlmeval/dataset/__init__.py`中定义的类名。 - 其他kwargs:其他kwargs是数据集特定的参数,请参考数据集类的定义以获取详细用法。通常,大多数数据集类都需要`dataset`参数。大多数视频数据集类都需要 `nframe` 或 `fps` 参数。 - Tip:在位于`vlmeval/dataset/video_dataset_config.py`的变量`supported_video_dataset`中的已经被定义的数据集可以作为`data`的键,而不需要填对应的值即可启动。例如,`MMBench_Video_8frame_nopack: {}`是等价于`MMBench_Video_8frame_nopack: {'class': 'MMBenchVideo', 'dataset': 'MMBench-Video', 'nframe': 8, 'pack': False}`。 将示例配置json保存为`config.json`,您可以通过以下命令启动评估: ```bash python run.py --config config.json ``` 这将在工作目录`$WORK_DIR`下生成以下输出文件(格式为`{$WORK_DIR}/{$MODEL_NAME}/{$MODEL_NAME}_{$DATASET_NAME}_*`): - `$WORK_DIR/GPT4o_20240806_T00_HIGH/GPT4o_20240806_T00_HIGH_MME-RealWorld-Lite*` - `$WORK_DIR/GPT4o_20240806_T10_Low/GPT4o_20240806_T10_Low_MME-RealWorld-Lite*` - `$WORK_DIR/GPT4o_20240806_T00_HIGH/GPT4o_20240806_T00_HIGH_MMBench_DEV_EN_V11*` - `$WORK_DIR/GPT4o_20240806_T10_Low/GPT4o_20240806_T10_Low_MMBench_DEV_EN_V11*` ......