from ..smp import * from ..dataset.utils.judge_util import build_judge from ..dataset.utils.multiple_choice import extract_answer_from_item from .matching_util import can_infer from .mp_util import track_progress_rich def MMMU_result_transfer(result_path): res = {} result_data = load(result_path) mcq = result_data['A'].notna() lt = len(result_data) for i in range(lt): line = result_data.iloc[i] if mcq[i]: options = { cand: line[cand] for cand in string.ascii_uppercase if cand in line and not pd.isna(line[cand]) } prediction = line['prediction'] infer_prediction = can_infer(prediction, options) res[line['id']] = infer_prediction else: res[line['id']] = line['prediction'] result_json = result_path.replace('.xlsx', '.json') dump(res, result_json) return result_json def MMTBench_result_transfer(eval_file, dataset='default', **judge_kwargs): logger = get_logger('Evaluation') nproc = judge_kwargs.pop('nproc', 4) rd.seed(2680) suffix = eval_file.split('.')[-1] model = judge_kwargs['model'] assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125'] name_str_map = { 'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4' } name_str = name_str_map[model] if model in name_str_map else model if model == 'exact_matching': model = None elif gpt_key_set(): model = build_judge(**judge_kwargs) if not model.working(): logger.error('The OPENAI API is not working properly, will use exact matching for evaluation') model = None else: logger.error('OPENAI_API_KEY is not set properly, will use exact matching for evaluation') model = None logger.info(f'Evaluating {eval_file}') result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_option.pkl') result = {} if osp.exists(result_file): result = load(result_file) data = load(eval_file) assert 'index' in data, 'Essentail columns missing in the eval_file.' data = data.sort_values(by='index') data['prediction'] = [str(x) for x in data['prediction']] for k in data.keys(): data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k) idx2lines = {data.iloc[i]['index']: data.iloc[i] for i in range(len(data))} idx2lines = {k: v for k, v in idx2lines.items() if k not in result} indices = list(idx2lines.keys()) lines = [idx2lines[i] for i in indices] tups = [(model, line) for line in lines] res = track_progress_rich( extract_answer_from_item, tups, nproc=nproc, chunksize=nproc, save=result_file, keys=indices) for i, r in zip(indices, res): if i in result: assert result[i]['opt'] == r['opt'] and result[i]['log'] == r['log'] else: result[i] = r indices = list(data['index']) data['opt'] = [result[i]['opt'] for i in data['index']] data['log'] = [result[i]['log'] for i in data['index']] # load split output_path = eval_file.replace(f'.{suffix}', f'_{name_str}_submission.tsv') dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_submission.tsv')) return output_path